1,120 research outputs found
Comparison of Source Rock Geochemistry of Selected Rocks from the Schei Point Group and Ringnes Formation, Sverdrup Basin, Arctic Canada
Organic-rich from the Schei Point group (middle to late Triassic in age) and the Ringnes formation (late Jurassic) from the Sverdrup basin of the Canadian arctic archipelago have been geochemically evaluated for source rock characterization. Most samples from the Schei Point group are organic-rich (\u3e 2% TOC) and are considered as immature to mature oil-prone source rocks [kerogen types I, I-II (IIA) and II (IIA)]. These kerogen types contain abundant AOM1, AOM2 and alginite (Tasmanales, Nostocopsis, Leiosphaeridia, acritarch and dinoflagellate) with variable amounts of vitrinite, inertinite and exinite. Samples from the Ringnes formation contain dominant vitrinite and inertinite with partially oxidized AOM2, alginite and exinite forming mostly immature to mature condensate- and gas-prone source rocks [kerogen type II- III (IIB), III and a few II (IIA)]. Schei Point samples contain higher bitumen extract, saturate hydrocarbons and saturate/aromatic ratio than the Ringnes samples. Triterpane and sterane (dominant C30) distribution patterns and stable carbon isotope of bitumen and kerogen suggest that the analyzed samples from the Schei Point group are at the onset of oil generation and contain a mixture of sapropelic (algal) and minor terrestrial humic organic matter. Sterane carbon number distributions in the Ringnes formation also suggest a mixed algal and terrestrial organic matter type. There are some variations in hopane carbon number distributions, but these are apparently a function of thermal maturity rather than significant genetic differences among samples. Pyrolysis-gas chromatography/mass spectrometry of the two samples with similar maturity shows that the Schei Point sample generates three times more pyrolyzate than the Ringnes sample. Both samples have a dominant aliphatic character, although the Ringnes sample contains phenol and an aromaticity that is higher than that of the Schei Point sample
Comparison of long-pulsed alexandrite laser and topical tretinoin-ammonium lactate in axillary acanthosis nigricans: A case series of patients in a before-after trial
Background: Acanthosis nigricans (AN) is a brown to black, velvety hyperpigmentation of the skin that usually involves cutaneous folds. Treatment of AN is important regarding cosmetic reasons and various therapeutic modalities have been used for these purposes. The goal of this study was to compare the effectiveness of long-pulsed alexandrite laser and topical tretinoin-ammonium lactate for treatment of axillary-AN. Methods: Fifteen patients with bilateral axillary-AN were studied in Razi Hospital, Tehran, Iran. Diagnosis was confirmed by two independent dermatologists. Each side skin lesion was randomly allocated to either topical mixed cream of tretinoin 0.05- ammonium lactate 12 or long-pulsed alexandrite laser. Duration of treatment was 14 weeks. At endpoint, the mean percent reduction from baseline in pigmentation area was compared between the two groups. Results: The study population consisted of 15 patients three males and 12, females. The mean age of patients was 28.5±4.9 years. The mean percent reduction was 18.3±10.6, in tretinoin/ammonium lactate group and 25.7±11.8 in laser group (P=0.004). Conclusion: These findings indicate that the application of alexandrite laser is a relative effective method for treatment of axillary-AN. However, this issue requires further studies with prolonged follow-up period
DNA multiplex hybridization on microarrays and thermodynamic stability in solution: a direct comparison
Hybridization intensities of 30 distinct short duplex DNAs measured on spotted microarrays, were directly compared with thermodynamic stabilities measured in solution. DNA sequences were designed to promote formation of perfect match, or hybrid duplexes containing tandem mismatches. Thermodynamic parameters ΔH°, ΔS° and ΔG° of melting transitions in solution were evaluated directly using differential scanning calorimetry. Quantitative comparison with results from 63 multiplex microarray hybridization experiments provided a linear relationship for perfect match and most mismatch duplexes. Examination of outliers suggests that both duplex length and relative position of tandem mismatches could be important factors contributing to observed deviations from linearity. A detailed comparison of measured thermodynamic parameters with those calculated using the nearest-neighbor model was performed. Analysis revealed the nearest-neighbor model generally predicts mismatch duplexes to be less stable than experimentally observed. Results also show the relative stability of a tandem mismatch is highly dependent on the identity of the flanking Watson–Crick (w/c) base pairs. Thus, specifying the stability contribution of a tandem mismatch requires consideration of the sequence identity of at least four base pair units (tandem mismatch and flanking w/c base pairs). These observations underscore the need for rigorous evaluation of thermodynamic parameters describing tandem mismatch stability
Stem cell-based approach for the treatment of Parkinson's disease
Parkinson's disease (PD) is the second most common neurodegenerative brain disorder which is around 1.5 times more common in men than in women. Currently, drug medications, surgery, and lifestyle changes are common approaches to PD, while all of them focused on reducing the symptoms. Therefore, regenerative medicine based on stem cell (SC) therapies has raised a promising hope. Various types of SCs have been used in basic and experimental studies relevant to PD, including embryonic pluripotential stem cells, mesenchymal (MSCs) and induced pluripotent SCs (iPSCs). MSCs have several advantages over other counterparts. They are easily accessible which can be obtained from various tissues such as bone marrow, adipose tissue, peripheral blood, etc. with avoiding ethical problems. Therefore, MSCs is attractive clinically because there are no related ethical and immunological concerns . Further studies are needed to answer some crucial questions about the different issues in SC therapy. Accordingly, SC-based therapy for PD also needed more complementary evaluation in both basic and clinical study areas
Fracture Propagation Driven by Fluid Outflow from a Low-permeability Aquifer
Deep saline aquifers are promising geological reservoirs for CO2
sequestration if they do not leak. The absence of leakage is provided by the
caprock integrity. However, CO2 injection operations may change the
geomechanical stresses and cause fracturing of the caprock. We present a model
for the propagation of a fracture in the caprock driven by the outflow of fluid
from a low-permeability aquifer. We show that to describe the fracture
propagation, it is necessary to solve the pressure diffusion problem in the
aquifer. We solve the problem numerically for the two-dimensional domain and
show that, after a relatively short time, the solution is close to that of
one-dimensional problem, which can be solved analytically. We use the relations
derived in the hydraulic fracture literature to relate the the width of the
fracture to its length and the flux into it, which allows us to obtain an
analytical expression for the fracture length as a function of time. Using
these results we predict the propagation of a hypothetical fracture at the In
Salah CO2 injection site to be as fast as a typical hydraulic fracture. We also
show that the hydrostatic and geostatic effects cause the increase of the
driving force for the fracture propagation and, therefore, our solution serves
as an estimate from below. Numerical estimates show that if a fracture appears,
it is likely that it will become a pathway for CO2 leakage.Comment: 21 page
Oncogenetics of Lung Cancer Induced by Environmental Carcinogens
The molecular landscape of non-tobacco-induced primary lung tumors displays specific oncogenetic features. The etiology of these tumors has been largely associated with exposure to well-established environmental lung carcinogens such as radon, arsenic, and asbestos. Environmental carcinogens can induce specific genetic and epigenetic alterations in lung tissue, leading to aberrant function of lung cancer oncogenes and tumor suppressor genes. These molecular events result in the disruption of key cellular mechanisms, such as protection against oxidative stress and DNA damage-repair, which promotes tumor development and progression. This chapter provides a comprehensive discussion of the specific carcinogenic mechanisms associated with exposure to radon, arsenic, and asbestos. It also summarizes the main protein-coding and non-coding genes affected by exposure to these environmental agents, and the underlying molecular mechanisms promoting their deregulation in lung cancer. Finally, the chapter examines the anticipated challenges in personalized intervention strategies in non-tobacco-induced lung cancer
MicroRNA-based linkage between aging and cancer: From epigenetics view point
Ageing is a complex process and a broad spectrum of physical, psychological, and social changes over time. Accompanying diseases and disabilities, which can interfere with cancer treatment and recovery, occur in old ages. MicroRNAs (miRNAs) are a set of small non-coding RNAs, which have considerable roles in post-transcriptional regulation at gene expression level. In this review, we attempted to summarize the current knowledge of miRNAs functions in ageing, with mainly focuses on malignancies and all underlying genetic, molecular and epigenetics mechanisms. The evidences indicated the complex and dynamic nature of miRNA-based linkage of ageing and cancer at genomics and epigenomics levels which might be generally crucial for understanding the mechanisms of age-related cancer and ageing. Recently in the field of cancer and ageing, scientists claimed that uric acid can be used to regulate reactive oxygen species (ROS), leading to cancer and ageing prevention; these findings highlight the role of miRNA-based inhibition of the SLC2A9 antioxidant pathway in cancer, as a novel way to kill malignant cells, while a patient is fighting with cancer
Clinical grade human adipose tissue-derived mesenchymal stem cell banking
In this study, our aim was to produce a generation of GMP-grade adipose tissue-derived mesenchymal stem cells for clinical applications. According to our results, we fulfill to establish consistent and also reproducible current good manufacturing practice (cGMP) compliant adipose tissue-derived mesenchymal stem cells from five female donors. The isolated cells were cultured in DMEM supplemented with 10 fetal bovine serum and characterized by standard methods. Moreover, karyotyping was performed to evaluate chromosomal stability. Mean of donors� age was 47.6 ± 8.29 year, mean of cell viability was 95.6 ± 1.51, and cell count was between 9�106 and 14�106 per microliter with the mean of 12.2�106 ± 2863564.21 per microliter. The main aim of this project was demonstrating the feasibility of cGMP-compliant and clinical grade adipose tissue-derived mesenchymal stem cells preparation and banking for clinical cell transplantation trials. © 2015 Tehran University of Medical Sciences. All rights reserved
Recommended from our members
Untargeted metabolomic analysis investigating links between unprocessed red meat intake and markers of inflammation.
BACKGROUND: Whether red meat consumption is associated with higher inflammation or confounded by increased adiposity remains unclear. Plasma metabolites capture the effects of diet after food is processed, digested, and absorbed, and correlate with markers of inflammation, so they can help clarify diet-health relationships. OBJECTIVE: To identify whether any metabolites associated with red meat intake are also associated with inflammation. METHODS: A cross-sectional analysis of observational data from older adults (52.84% women, mean age 63 ± 0.3 y) participating in the Multi-Ethnic Study of Atherosclerosis (MESA). Dietary intake was assessed by food-frequency questionnaire, alongside C-reactive protein (CRP), interleukin-2, interleukin-6, fibrinogen, homocysteine, and tumor necrosis factor alpha, and untargeted proton nuclear magnetic resonance (1H NMR) metabolomic features. Associations between these variables were examined using linear regression models, adjusted for demographic factors, lifestyle behaviors, and body mass index (BMI). RESULTS: In analyses that adjust for BMI, neither processed nor unprocessed forms of red meat were associated with any markers of inflammation (all P > 0.01). However, when adjusting for BMI, unprocessed red meat was inversely associated with spectral features representing the metabolite glutamine (sentinel hit: β = -0.09 ± 0.02, P = 2.0 × 10-5), an amino acid which was also inversely associated with CRP level (β = -0.11 ± 0.01, P = 3.3 × 10-10). CONCLUSIONS: Our analyses were unable to support a relationship between either processed or unprocessed red meat and inflammation, over and above any confounding by BMI. Glutamine, a plasma correlate of lower unprocessed red meat intake, was associated with lower CRP levels. The differences in diet-inflammation associations, compared with diet metabolite-inflammation associations, warrant further investigation to understand the extent that these arise from the following: 1) a reduction in measurement error with metabolite measures; 2) the extent that which factors other than unprocessed red meat intake contribute to glutamine levels; and 3) the ability of plasma metabolites to capture individual differences in how food intake is metabolized
Transfer RNA-derived small RNAs in the cancer transcriptome
The cellular lifetime includes stages such as differentiation, proliferation, division, senescence and apoptosis.These stages are driven by a strictly ordered process of transcription dynamics. Molecular disruption to RNA polymerase assembly, chromatin remodelling and transcription factor binding through to RNA editing, splicing, post-transcriptional regulation and ribosome scanning can result in significant costs arising from genome instability. Cancer development is one example of when such disruption takes place. RNA silencing is a term used to describe the effects of post-transcriptional gene silencing mediated by a diverse set of small RNA molecules. Small RNAs are crucial for regulating gene expression and microguarding genome integrity.RNA silencing studies predominantly focus on small RNAs such as microRNAs, short-interfering RNAs and piwi-interacting RNAs. We describe an emerging renewal of inter-est in a‘larger’small RNA, the transfer RNA (tRNA).Precisely generated tRNA-derived small RNAs, named tRNA halves (tiRNAs) and tRNA fragments (tRFs), have been reported to be abundant with dysregulation associated with cancer. Transfection of tiRNAs inhibits protein translation by displacing eukaryotic initiation factors from messenger RNA (mRNA) and inaugurating stress granule formation.Knockdown of an overexpressed tRF inhibits cancer cell proliferation. Recovery of lacking tRFs prevents cancer metastasis. The dual oncogenic and tumour-suppressive role is typical of functional small RNAs. We review recent reports on tiRNA and tRF discovery and biogenesis, identification and analysis from next-generation sequencing data and a mechanistic animal study to demonstrate their physiological role in cancer biology. We propose tRNA-derived small RNA-mediated RNA silencing is an innate defence mechanism to prevent oncogenic translation. We expect that cancer cells are percipient to their ablated control of transcription and attempt to prevent loss of genome control through RNA silencing
- …