582 research outputs found

    Shape morphing of complex geometries using partial differential equations.

    Get PDF
    An alternative technique for shape morphing using a surface generating method using partial differential equations is outlined throughout this work. The boundaryvalue nature that is inherent to this surface generation technique together with its mathematical properties are hereby exploited for creating intermediate shapes between an initial shape and a final one. Four alternative shape morphing techniques are proposed here. The first one is based on the use of a linear combination of the boundary conditions associated with the initial and final surfaces, the second one consists of varying the Fourier mode for which the PDE is solved whilst the third results from a combination of the first two. The fourth of these alternatives is based on the manipulation of the spine of the surfaces, which is computed as a by-product of the solution. Results of morphing sequences between two topologically nonequivalent surfaces are presented. Thus, it is shown that the PDE based approach for morphing is capable of obtaining smooth intermediate surfaces automatically in most of the methodologies presented in this work and the spine has been revealed as a powerful tool for morphing surfaces arising from the method proposed here

    On the Validity of the Imbert-Fick Law: Mathematical Modelling of Eye Pressure Measurement

    Get PDF
    YesOphthalmologists rely on a device known as the Goldmann applanation tonometer to make intraocular pressure (IOP) measurements. It measures the force required to press a flat disc against the cornea to produce a flattened circular region of known area. The IOP is deduced from this force using the Imbert-Fick principle. However, there is scant analytical justification for this analysis. We present a mathematical model of tonometry to investigate the relationship between the pressure derived by tonometry and the IOP. An elementary equilibrium analysis suggests that there is no physical basis for traditional tonometric analysis. Tonometry is modelled using a hollow spherical shell of solid material enclosing an elastic liquid core, with the shell in tension and the core under pressure. The shell is pressed against a rigid flat plane. The solution is found using finite element analysis. The shell material is anisotropic. Values for its elastic constants are obtained from literature except where data are unavailable, when reasonable limits are explored. The results show that the force measured by the Goldmann tonometer depends on the elastic constant values. The relationship between the IOP and the tonometer readings is complex, showing potentially high levels of inaccuracy that depend on IOP

    The Effect of Silver Nanofibers on the Deformation Properties of Blood Vessels: Towards the Development of New Nanotechnologies to Prevent Rupture of Aneurysms

    Get PDF
    An aneurysm is the result of a widening or ballooning of a portion of a blood vessel. The rupture of an aneurysm occurs when the mechanical stress acting on the inner wall exceeds the failure strength of the blood vessel. We propose an innovative approach to prevent the rupture of an aneurysm based on the use of nanotechnology to improve the strength of the blood vessel. We present results on the effect of silver nanofibers on the resistance toward deformation of blood vessels. The silver nanofibers are grown on the surface of the blood vessels. The nanofibers are 120±30 nm in diameter and 2.7±0.8 μm in length. The deformation per applied force of blood vessels was found to decrease from 0.15 m/N in control blood vessels to 0.003 m/N in blood vessels treated with the nanofibers. This represents an increase in the resistance towards deformation of a factor of 50. The increase in the resistance towards deformation is clinically significant since blood pressure increases by factors slightly larger than one in the human body. Treatment of blood vessels with silver nanofibers is a potential translational clinical tool for preventing rupture of aneurysms in a clinical setting

    Towards the analytic characterization of micro and nano surface features using the Biharmonic equation

    Get PDF
    YesThe prevalence of micromoulded components has steadily increased over recent years. The production of such components is extremely sensitive to a number of variables that may potentially lead to significant changes in the surface geometry, often regarded as a crucial determinant of the product¿s functionality and quality. So far, traditional large-scale quality assessment techniques have been used in micromoulding. However, these techniques are not entirely suitable for small scales . Techniques such as Atomic Force Mi- croscopy (AFM) or White Light Interferometry (WLI) have been used for obtaining full three-dimensional profiles of micromoulded components, pro- ducing large data sets that are very difficult to manage. This work presents a method of characterizing surface features of micro and nano scale based on the use of the Biharmonic equation as means of describing surface profiles whilst guaranteeing tangential (C1) continuity. Thus, the problem of rep- resenting surface features of micromoulded components from massive point clouds is transformed into a boundary-value problem, reducing the amount of data required to describe any given surface feature.The boundary conditions needed for finding a particular solution to the Biharmonic equation are extracted from the data set and the coefficients associated with a suitable analytic solution are used to describe key design parameters or geometric properties of a surface feature. Moreover, the expressions found for describ- ing key design parameters in terms of the analytic solution to the Biharmonic equation may lead to a more suitable quality assessment technique for mi- cromoulding than the criteria currently used. In summary this technique provides a means for compressing point clouds representing surface features whilst providing an analytic description of such features. The work is applicable to many other instances where surface topography is in need of efficient representation

    Application of multiple criteria decision analysis (MCDA) for the selection of pharmacological treatments / Aplicação da análise de decisão baseada em múltiplos critérios para seleção de tratamentos farmacológicos

    Get PDF
    Introduction: Health Technology Assessment (HTA) is a tool that assists in the management of health systems, in which economic assessments are frequently applied. It is possible that the use of multicriteria analysis (MCDA) increases the quality of decisions. Objective: Identify the potentialities of the application of Multiple Criteria Decision Analysis (MCDA) in studies that used this type of method for the selection of treatments. Methods: An integrative review was executed based on articles where MCDA methods had been applied for the selection of treatments between February and April 2017 in the following databases: Pubmed (MEDLINE), Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS), Embase, Science Direct, Scopus, Web of Science and Wiley Online Library. Results: Eighteen studies published between 1998 and 2017 in which different MCDA techniques were applied were selected. Growth in the number of published studies was observed, showing increasing interest in the use of this type of method in health decision making. Conclusion: MCDA may guide more adequate decisions compared to the traditional Health Technology Assessment (HTA) methods and has the potential to help in the selection of treatments and the construction of medicines’ lists
    corecore