261 research outputs found

    Modification of nanofiber support layer for thin film composite forward osmosis membranes via layer-by-layer polyelectrolyte deposition

    Full text link
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Electrospun nanofiber-supported thin film composite membranes are among the most promising membranes for seawater desalination via forward osmosis. In this study, a high-performance electrospun polyvinylidenefluoride (PVDF) nanofiber-supported thin film composite (TFC) membrane was successfully fabricated after molecular layer-by-layer polyelectrolyte deposition. Negatively-charged electrospun polyacrylic acid (PAA) nanofibers were deposited on electrospun PVDF nanofibers to form a support layer consisted of PVDF and PAA nanofibers. This resulted to a more hydrophilic support compared to the plain PVDF nanofiber support. The PVDF-PAA nanofiber support then underwent a layer-by-layer deposition of polyethylenimine (PEI) and PAA to form a polyelectrolyte layer on the nanofiber surface prior to interfacial polymerization, which forms the selective polyamide layer of TFC membranes. The resultant PVDF-LbL TFC membrane exhibited enhanced hydrophilicity and porosity, without sacrificing mechanical strength. As a result, it showed high pure water permeability and low structural parameter values of 4.12 L m−2 h−1 bar−1 and 221 µm, respectively, significantly better compared to commercial FO membrane. Layer-by-layer deposition of polyelectrolyte is therefore a useful and practical modification method for fabrication of high performance nanofiber-supported TFC membrane

    GreenPRO: A novel fertiliser-driven osmotic power generation process for fertigation

    Full text link
    © 2018 This study introduces and describes GreenPRO, a novel concept involving fertiliser-driven osmotic energy generation via pressure retarded osmosis (PRO). The potential of GreenPRO was proposed for three objectives: (a) power generation, (b) water pressurisation for fertiliser-based irrigation, and (c) water treatment, as a holistic water-energy-food nexus process. Three pure agricultural fertilisers and two commercial blended fertiliser solutions were used as the draw solution and irrigation water as feed to test this concept for power generation. Theoretical thermodynamic simulation of the maximum extractable Gibbs energy, was first performed. After which, a series of bench-scale experiments were conducted to obtain realistic extractable energy data. The results showed that concentrated fertilisers potentially have 11 times higher energy than seawater. Even after accounting for the irreversibility losses due to constant pressure operation, the investigated pure fertilisers were found to have between 2.5 and 4.6 Wh/kg of energy. The outcomes from the flux and power density modelling were then validated with real experimental data. This study has successfully demonstrated that concentrated fertilisers can release a substantial amount of chemical potential energy when diluted for fertigation. This energy could be harnessed by transforming it into electric energy or pressure energy via PRO

    Arthropod biodiversity associated to Europen sheep production systems

    Get PDF
    The rural territories linked to European sheep systems still cover wide areas and provide multiple ecosystems services although the current situation of the associated biodiversity is not fully understood. In this study the foliage arthropods (including pollinators), the vegetation cover and height, the number of flowers and plant species richness were evaluated in 9 sheep grazed lands from 5 EU countries with different livestock management strategies and dominant vegetation. The total abundance of arthropods, the abundance of Diptera and Heteroptera, sward height and plant species richness were higher in more extensive than in more intensively managed farms. The total abundance and the abundance of most of the orders were highest in mountain areas (MP) and lowest in improved pastures (IMP) whereas the total arthropod richness showed no differences and the richness of pollinators was lower in IMP than in MP (p < 0.01) and semi-natural pastures (SN, p < 0.01). The grass cover was higher in IMP than in the rest of the areas whereas forb cover was higher in SN than in IMP (p < 0.01). The plant species richness peaked in MP whereas the number of flowers showed no significant differences. Sward height correlated positively with forb cover, plant species richness, the richness of the whole arthropod community, the abundance of several orders like Araneae, Diptera or Homoptera, as well as with the richness of the pollinator community. The community composition of the total arthropod fauna (p < 0.01) and the pollinators in particular (p < 0.05) differed between management strategies and more diverse groups were linked to the areas under more extensive management. Both communities (total and pollinators) also differed in composition between the types of vegetation (p < 0.01) and less diverse assemblages with low abundant taxa were associated to IMP and SN whereas more diverse groups were linked to MP and grassland-forest (WP) in both cases. A better understanding of the flora-fauna dynamics in sheep grazed pasturelands is essential for the proper conservation of the biodiversity and other ecosystem services, as well as for the maintenance of sustainable sheep systems relying on the natural resources

    Aliphatic polyketone-based thin film composite membrane with mussel-inspired polydopamine intermediate layer for high performance osmotic power generation

    Full text link
    Polydopamine (PDA), formed from self-polymerization of dopamine, was coated on aliphatic polyketone membrane substrate prior to interfacial polymerization (IP), preparing a pressure retarded osmosis (PRO) thin film composite (TFC) membrane with a PDA interlayer. The effect of the formation of two types of PDA interlayers — smooth and particulate — on substrate morphology, polyamide formation, and PRO osmotic performance were investigated. Also, the effect of pH on the particulate PDA interlayer was studied. It was found that the introduction of both smooth and particulate PDA contributes to enhanced water flux and power density of the PRO membranes. pH was found to have significantly affected the formation of particulate PDA and the polyamide formation, as well. At higher pH, PDA self-polymerization led to the formation of more nanoparticles, the subsequent increase in surface roughness and decline in the polyketone substrate porosity. The particulate PDA interlayer formed looser polyamide, compared to the thinner and denser polyamide formed on pristine and smooth PDA-interlayer-coated TFC membranes. The membrane performance was evaluated using deionized water and 1.0 M NaCl as feed and draw solutions, respectively. The TFC membrane with nanoparticulate PDA layer formed at pH 9.0 exhibited the best initial water flux of 40.8 L m−2 h−1, and this membrane also showed the highest power density of 17.1 W m−2 at 25 bar. The results of this study indicate that nanoparticulate PDA interlayer formation is a simple and scalable TFC membrane development method for engineered osmosis

    Can antibiotic prescriptions in respiratory tract infections be improved? A cluster-randomized educational intervention in general practice – The Prescription Peer Academic Detailing (Rx-PAD) Study [NCT00272155]

    Get PDF
    BACKGROUND: More than half of all antibiotic prescriptions in general practice are issued for respiratory tract infections (RTIs), despite convincing evidence that many of these infections are caused by viruses. Frequent misuse of antimicrobial agents is of great global health concern, as we face an emerging worldwide threat of bacterial antibiotic resistance. There is an increasing need to identify determinants and patterns of antibiotic prescribing, in order to identify where clinical practice can be improved. METHODS/DESIGN: Approximately 80 peer continuing medical education (CME) groups in southern Norway will be recruited to a cluster randomized trial. Participating groups will be randomized either to an intervention- or a control group. A multifaceted intervention has been tailored, where key components are educational outreach visits to the CME-groups, work-shops, audit and feedback. Prescription Peer Academic Detailers (Rx-PADs), who are trained GPs, will conduct the educational outreach visits. During these visits, evidence-based recommendations of antibiotic prescriptions for RTIs will be presented and software will be handed out for installation in participants PCs, enabling collection of prescription data. These data will subsequently be linked to corresponding data from the Norwegian Prescription Database (NorPD). Individual feedback reports will be sent all participating GPs during and one year after the intervention. Main outcomes are baseline proportion of inappropriate antibiotic prescriptions for RTIs and change in prescription patterns compared to baseline one year after the initiation of the tailored pedagogic intervention. DISCUSSION: Improvement of prescription patterns in medical practice is a challenging task. A thorough evaluation of guidelines for antibiotic treatment in RTIs may impose important benefits, whereas inappropriate prescribing entails substantial costs, as well as undesirable consequences like development of antibiotic resistance. Our hypothesis is that an educational intervention program will be effective in improving prescription patterns by reducing the total number of antibiotic prescriptions, as well as reducing the amount of broad-spectrum antibiotics, with special emphasis on macrolides

    Up-regulation of multiple proteins and biological processes during maxillary expansion in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maxillary expansion (ME) is a common practice in orthodontics that aims to increase the constricted maxillary arch width. Relapse often occurs, however, and better treatment strategies are needed. In order to develop a more effective method, this study was designed to further examine the process of tissue remodeling during ME, to identify the changes in expression of several proteins of interest, and to clarify the molecular mechanism responsible for tissue remodeling.</p> <p>Methods</p> <p>Male Wistar rats were randomly divided into control and ME groups. The rats were euthanized at various intervals over 11 days, and the dissected palates were prepared for histological examination. The structure of the midpalatal sutures changed little during the first three days. Proteins from samples in the ground midpalatal tissues obtained on the third day were subjected to two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Validation of protein expression was performed by Western blot analyses.</p> <p>Results</p> <p>From day 5, chondrocytes in the inner layer of suture cartilage and osteoblasts at the end of the suture cartilage began to proliferate, and the skeletal matrix increased later adjacent to the cartilage in the ME group. Comparative proteomic analysis showed increases in 22 protein spots present in the ME group. The changes in three proteins closely related to osteogenesis (parathyroid hormone, osteoprotegerin and vimentin) were confirmed by Western blotting.</p> <p>Conclusion</p> <p>Many proteins are over-expressed during ME, and they may play an important role in the remodeling process.</p

    Bisphenol A-Mediated Suppression of LPL Gene Expression Inhibits Triglyceride Accumulation during Adipogenic Differentiation of Human Adult Stem Cells

    Get PDF
    The endocrine disrupting chemical, bisphenol A (BPA), has been shown to accelerate the rate of adipogenesis and increase the amount of triglyceride accumulation during differentiation of 3T3-L1 preadipocytes. The objective of this study was to investigate if that observation is mirrored in human primary cells. Here we investigated the effect of BPA on adipogenesis in cultured human primary adult stem cells. Continuous exposure to BPA throughout the 14 days of differentiation dramatically reduced triglyceride accumulation and suppressed gene transcription of the lipogenic enzyme, lipoprotein lipase (LPL). Results presented in the present study show for the first time that BPA can reduce triglyceride accumulation during adipogenesis by attenuating the expression of LPL gene transcription. Also, by employing image cytometric analysis rather than conventional Oil red O staining techniques we show that BPA regulates triglyceride accumulation in a manner which does not appear to effect adipogenesis per se

    Semi-automatic algorithm for construction of the left ventricular area variation curve over a complete cardiac cycle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two-dimensional echocardiography (2D-echo) allows the evaluation of cardiac structures and their movements. A wide range of clinical diagnoses are based on the performance of the left ventricle. The evaluation of myocardial function is typically performed by manual segmentation of the ventricular cavity in a series of dynamic images. This process is laborious and operator dependent. The automatic segmentation of the left ventricle in 4-chamber long-axis images during diastole is troublesome, because of the opening of the mitral valve.</p> <p>Methods</p> <p>This work presents a method for segmentation of the left ventricle in dynamic 2D-echo 4-chamber long-axis images over the complete cardiac cycle. The proposed algorithm is based on classic image processing techniques, including time-averaging and wavelet-based denoising, edge enhancement filtering, morphological operations, homotopy modification, and watershed segmentation. The proposed method is semi-automatic, requiring a single user intervention for identification of the position of the mitral valve in the first temporal frame of the video sequence. Image segmentation is performed on a set of dynamic 2D-echo images collected from an examination covering two consecutive cardiac cycles.</p> <p>Results</p> <p>The proposed method is demonstrated and evaluated on twelve healthy volunteers. The results are quantitatively evaluated using four different metrics, in a comparison with contours manually segmented by a specialist, and with four alternative methods from the literature. The method's intra- and inter-operator variabilities are also evaluated.</p> <p>Conclusions</p> <p>The proposed method allows the automatic construction of the area variation curve of the left ventricle corresponding to a complete cardiac cycle. This may potentially be used for the identification of several clinical parameters, including the area variation fraction. This parameter could potentially be used for evaluating the global systolic function of the left ventricle.</p

    The landscape of inherited and de novo copy number variants in a plasmodium falciparum genetic cross

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copy number is a major source of genome variation with important evolutionary implications. Consequently, it is essential to determine copy number variant (CNV) behavior, distributions and frequencies across genomes to understand their origins in both evolutionary and generational time frames. We use comparative genomic hybridization (CGH) microarray and the resolution provided by a segregating population of cloned progeny lines of the malaria parasite, <it>Plasmodium falciparum</it>, to identify and analyze the inheritance of 170 genome-wide CNVs.</p> <p>Results</p> <p>We describe CNVs in progeny clones derived from both Mendelian (i.e. inherited) and non-Mendelian mechanisms. Forty-five CNVs were present in the parent lines and segregated in the progeny population. Furthermore, extensive variation that did not conform to strict Mendelian inheritance patterns was observed. 124 CNVs were called in one or more progeny but in neither parent: we observed CNVs in more than one progeny clone that were not identified in either parent, located more frequently in the telomeric-subtelomeric regions of chromosomes and singleton <it>de novo </it>CNVs distributed evenly throughout the genome. Linkage analysis of CNVs revealed dynamic copy number fluctuations and suggested mechanisms that could have generated them. Five of 12 previously identified expression quantitative trait loci (eQTL) hotspots coincide with CNVs, demonstrating the potential for broad influence of CNV on the transcriptional program and phenotypic variation.</p> <p>Conclusions</p> <p>CNVs are a significant source of segregating and <it>de novo </it>genome variation involving hundreds of genes. Examination of progeny genome segments provides a framework to assess the extent and possible origins of CNVs. This segregating genetic system reveals the breadth, distribution and dynamics of CNVs in a surprisingly plastic parasite genome, providing a new perspective on the sources of diversity in parasite populations.</p
    corecore