11 research outputs found
Descripción de los sentimientos de las madres embarazadas que tienen conocimiento de que van a tener parto por cesárea desde la perspectiva de la terapia Gestalt considerando la asesoría psicológica
226 Páginas.El objetivo del presente trabajo, fue describir los sentimientos de las madres embarazadas asistidas por las EPS, que tuvieron conocimiento de que iban a tener parto por cesárea, para describir los procesos psicológicos y las necesidades emocionales involucradas. En esta investigación el enfoque humanista, dio las pautas para conocer a la mujer en su totalidad, resaltando sus sentimientos a partir de la Terapia Gestalt. Se realizó una entrevista semiestructurada y observación a diez madres con características similares, para encontrarle un sentido a la expresión de sus sentimientos y darle importancia al lenguaje corporal. Al realizar las entrevistas y la observación, se identificaron los sentimientos, clasificándolos dentro de bloques y categorías permitiendo dar la pauta para indagar y describir los sentimientos
Una experiencia innovadora: Narrativas sobre enfermedades poco frecuentes
Se presenta una experiencia innovadora realizada con el departamento de QB y un grupo de didactas del CEFIEC (Centro de Formación e Investigación en Enseñanza de las Ciencias) de la FCEyN. Un grupo de estudiantes de la asignatura, tutorados por docentes de ambos espacios académicos, elaboraron narrativas sobre enfermedades poco frecuentes a ser explicadas por procesos bioquímicos. Los relatos fueron presentados en la Segunda Jornada sobre Perspectivas Críticas para la Enseñanza de la Salud organizada por el Instituto CEFIEC que convocó a estudiantes y docentes de los profesorados de Biología y Química de la FCEyN y otros centros de formación docente.This article presents an innovative experience carried out between Department of Biological Chemistry and a couple of members from the CeFIEC (Centro de Formación e Investigación en Enseñanza de las Ciencias) from the FCEyN. A group of students who had taken the subject, with the tutoring from teachers belonging to both academic areas, elaborated narratives on several rare diseases explained by chemical processes. These short stories were presented at the Second Conference about Critical Perspectives on Health Pedagogy (organized by the CeFIEC institute) which gathered students and biology and chemistry teacher education programs, in addition to some other teaching-formation centers.Fil: Aduriz Bravo, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Formación e Investigación en Enseñanza de las Ciencias; ArgentinaFil: Cagliero, Joaquina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Carrera, Martin Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Coto, Lola. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Di Ielsi, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Domínguez, Darian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Fabre Barbero, Nicole. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Fernandez, Sofia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Goldschmidt, Juana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Gomez, Noelia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Karsanksy Atallah, Martina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: López Martín, Paula. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Pagano, Camila. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Pagnotta, Priscila Ayelén. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Pérgola, Martín Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Formación e Investigación en Enseñanza de las Ciencias; ArgentinaFil: Revelchion, Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Formación e Investigación en Enseñanza de las Ciencias; ArgentinaFil: Santos, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional; ArgentinaFil: Scarrone, Lisandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Tacchino, Valentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Toppino, Ailén Rocío. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Waldman, Malena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Zavalia, Lola. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentin
FlowCT for the analysis of large immunophenotypic datasets and biomarker discovery in cancer immunology
Large-scale immune monitoring is becoming routinely used in clinical trials to identify determinants of treatment responsiveness, particularly to immunotherapies. Flow cytometry remains one of the most versatile and high throughput approaches for single-cell analysis; however, manual interpretation of multidimensional data poses a challenge to capture full cellular diversity and provide reproducible results. We present FlowCT, a semi-automated workspace empowered to analyze large datasets that includes pre-processing, normalization, multiple dimensionality reduction techniques, automated clustering and predictive modeling tools. As a proof of concept, we used FlowCT to compare the T cell compartment in bone marrow (BM) vs peripheral blood (PB) of patients with smoldering multiple myeloma (MM); identify minimally-invasive immune biomarkers of progression from smoldering to active MM; define prognostic T cell subsets in the BM of patients with active MM after treatment intensification; and assess the longitudinal effect of maintenance therapy in BM T cells. A total of 354 samples were analyzed and immune signatures predictive of malignant transformation in 150 smoldering MM patients (hazard ratio [HR]: 1.7; P <.001), and of progression-free (HR: 4.09; P <.0001) and overall survival (HR: 3.12; P =.047) in 100 active MM patients, were identified. New data also emerged about stem cell memory T cells, the concordance between immune profiles in BM vs PB and the immunomodulatory effect of maintenance therapy. FlowCT is a new open-source computational approach that can be readily implemented by research laboratories to perform quality-control, analyze high-dimensional data, unveil cellular diversity and objectively identify biomarkers in large immune monitoring studies
FlowCT for the analysis of large immunophenotypic data sets and biomarker discovery in cancer immunology
Large-scale immune monitoring is becoming routinely used in clinical
trials to identify determinants of treatment responsiveness,
particularly to immunotherapies. Flow cytometry remains one of the most
versatile and high throughput approaches for single cell analysis;
however, manual interpretation of multidimensional data poses a
challenge when attempting to capture full cellular diversity and provide
reproducible results. We present FlowCT, a semi-automated workspace
empowered to analyze large data sets. It includes pre-processing,
normalization, multiple dimensionality reduction techniques, automated
clustering, and predictive modeling tools. As a proof of concept, we
used FlowCT to compare the T-cell compartment in bone marrow (BM) with
peripheral blood (PB) from patients with smoldering multiple myeloma
(SMM), identify minimally invasive immune biomarkers of progression from
smoldering to active MM, define prognostic T-cell subsets in the BM of
patients with active MM after treatment intensification, and assess the
longitudinal effect of maintenance therapy in BM T cells. A total of 354
samples were analyzed and immune signatures predictive of malignant
transformation were identified in 150 patients with SMM (hazard ratio
[HR], 1.7; P < .001). We also determined progression-free survival
(HR, 4.09; P < .0001) and overall survival (HR, 3.12; P 5 .047) in 100
patients with active MM. New data also emerged about stem cell memory T
cells, the concordance between immune profiles in BM and PB, and the
immunomodulatory effect of maintenance therapy. FlowCT is a new
open-source computational approach that can be readily implemented by
research laboratories to perform quality control, analyze
high-dimensional data, unveil cellular diversity, and objectively
identify biomarkers in large immune monitoring studies. These trials
were registered at www. clinicaltrials.gov as #NCT01916252 and
#NCT02406144
FlowCT for the analysis of large immunophenotypic data sets and biomarker discovery in cancer immunology
Large-scale immune monitoring is becoming routinely used in clinical trials to identify determinants of treatment responsiveness, particularly to immunotherapies. Flow cytometry remains one of the most versatile and high throughput approaches for single-cell analysis; however, manual interpretation of multidimensional data poses a challenge when attempting to capture full cellular diversity and provide reproducible results. We present FlowCT, a semi-automated workspace empowered to analyze large data sets. It includes pre-processing, normalization, multiple dimensionality reduction techniques, automated clustering, and predictive modeling tools. As a proof of concept, we used FlowCT to compare the T-cell compartment in bone marrow (BM) with peripheral blood (PB) from patients with smoldering multiple myeloma (SMM), identify minimally invasive immune biomarkers of progression from smoldering to active MM, define prognostic T-cell subsets in the BM of patients with active MM after treatment intensification, and assess the longitudinal effect of maintenance therapy in BM T cells. A total of 354 samples were analyzed and immune signatures predictive of malignant transformation were identified in 150 patients with SMM (hazard ratio [HR], 1.7; P < .001). We also determined progression-free survival (HR, 4.09; P < .0001) and overall survival (HR, 3.12; P = .047) in 100 patients with active MM. New data also emerged about stem cell memory T cells, the concordance between immune profiles in BM and PB, and the immunomodulatory effect of maintenance therapy. FlowCT is a new open-source computational approach that can be readily implemented by research laboratories to perform quality control, analyze high-dimensional data, unveil cellular diversity, and objectively identify biomarkers in large immune monitoring studies. These trials were registered at www.clinicaltrials.gov as #NCT01916252 and #NCT02406144
FlowCT for the analysis of large immunophenotypic data sets and biomarker discovery in cancer immunology
Large-scale immune monitoring is becoming routinely used in clinical trials to identify determinants of treatment responsiveness, particularly to immunotherapies. Flow cytometry remains one of the most versatile and high throughput approaches for single-cell analysis; however, manual interpretation of multidimensional data poses a challenge when attempting to capture full cellular diversity and provide reproducible results. We present FlowCT, a semi-automated workspace empowered to analyze large data sets. It includes pre-processing, normalization, multiple dimensionality reduction techniques, automated clustering, and predictive modeling tools. As a proof of concept, we used FlowCT to compare the T-cell compartment in bone marrow (BM) with peripheral blood (PB) from patients with smoldering multiple myeloma (SMM), identify minimally invasive immune biomarkers of progression from smoldering to active MM, define prognostic T-cell subsets in the BM of patients with active MM after treatment intensification, and assess the longitudinal effect of maintenance therapy in BM T cells. A total of 354 samples were analyzed and immune signatures predictive of malignant transformation were identified in 150 patients with SMM (hazard ratio [HR], 1.7; P < .001). We also determined progression-free survival (HR, 4.09; P < .0001) and overall survival (HR, 3.12; P = .047) in 100 patients with active MM. New data also emerged about stem cell memory T cells, the concordance between immune profiles in BM and PB, and the immunomodulatory effect of maintenance therapy. FlowCT is a new open-source computational approach that can be readily implemented by research laboratories to perform quality control, analyze high-dimensional data, unveil cellular diversity, and objectively identify biomarkers in large immune monitoring studies. These trials were registered at www.clinicaltrials.gov as #NCT01916252 and #NCT02406144