3,421 research outputs found

    An Algorithm to Generate Deep-Layer Temperatures from Microwave Satellite Observations for the Purpose of Monitoring Climate Change

    Get PDF
    An algorithm for generating deep-layer mean temperatures from satellite-observed microwave observations is presented. Unlike traditional temperature retrieval methods, this algorithm does not require a first guess temperature of the ambient atmosphere. By eliminating the first guess a potentially systematic source of error has been removed. The algorithm is expected to yield long-term records that are suitable for detecting small changes in climate. The atmospheric contribution to the deep-layer mean temperature is given by the averaging kernel. The algorithm computes the coefficients that will best approximate a desired averaging kernel from a linear combination of the satellite radiometer's weighting functions. The coefficients are then applied to the measurements to yield the deep-layer mean temperature. Three constraints were used in deriving the algorithm: (1) the sum of the coefficients must be one, (2) the noise of the product is minimized, and (3) the shape of the approximated averaging kernel is well-behaved. Note that a trade-off between constraints 2 and 3 is unavoidable. The algorithm can also be used to combine measurements from a future sensor (i.e., the 20-channel Advanced Microwave Sounding Unit (AMSU)) to yield the same averaging kernel as that based on an earlier sensor (i.e., the 4-channel Microwave Sounding Unit (MSU)). This will allow a time series of deep-layer mean temperatures based on MSU measurements to be continued with AMSU measurements. The AMSU is expected to replace the MSU in 1996

    Evolution of constrained layer damping using a cellular automaton algorithm

    No full text
    Constrained layer damping (CLD) is a highly effective passive vibration control strategy if optimized adequately. Factors controlling CLD performance are well documented for the flexural modes of beams but not for more complicated mode shapes or structures. The current paper introduces an approach that is suitable for locating CLD on any type of structure. It follows the cellular automaton (CA) principle and relies on the use of finite element models to describe the vibration properties of the structure. The ability of the algorithm to reach the best solution is demonstrated by applying it to the bending and torsion modes of a plate. Configurations that give the most weight-efficient coverage for each type of mode are first obtained by adapting the existing 'optimum length' principle used for treated beams. Next, a CA algorithm is developed, which grows CLD patches one at a time on the surface of the plate according to a simple set of rules. The effectiveness of the algorithm is then assessed by comparing the generated configurations with the known optimum ones

    A simple two-module problem to exemplify building-block assembly under crossover

    No full text
    Theoretically and empirically it is clear that a genetic algorithm with crossover will outperform a genetic algorithm without crossover in some fitness landscapes, and vice versa in other landscapes. Despite an extensive literature on the subject, and recent proofs of a principled distinction in the abilities of crossover and non-crossover algorithms for a particular theoretical landscape, building general intuitions about when and why crossover performs well when it does is a different matter. In particular, the proposal that crossover might enable the assembly of good building-blocks has been difficult to verify despite many attempts at idealized building-block landscapes. Here we show the first example of a two-module problem that shows a principled advantage for cross-over. This allows us to understand building-block assembly under crossover quite straightforwardly and build intuition about more general landscape classes favoring crossover or disfavoring it

    Balancing generalization and lexical conservatism : an artificial language study with child learners

    Get PDF
    Successful language acquisition involves generalization, but learners must balance this against the acquisition of lexical constraints. Such learning has been considered problematic for theories of acquisition: if learners generalize abstract patterns to new words, how do they learn lexically-based exceptions? One approach claims that learners use distributional statistics to make inferences about when generalization is appropriate, a hypothesis which has recently received support from Artificial Language Learning experiments with adult learners (Wonnacott, Newport, & Tanenhaus, 2008). Since adult and child language learning may be different (Hudson Kam & Newport, 2005), it is essential to extend these results to child learners. In the current work, four groups of children (6 years) were each exposed to one of four semi-artificial languages. The results demonstrate that children are sensitive to linguistic distributions at and above the level of particular lexical items, and that these statistics influence the balance between generalization and lexical conservatism. The data are in line with an approach which models generalization as rational inference and in particular with the predictions of the domain general hierarchical Bayesian model developed in Kemp, Perfors & Tenenbaum, 2006. This suggests that such models have relevance for theories of language acquisition

    The Peculiar Phase Structure of Random Graph Bisection

    Full text link
    The mincut graph bisection problem involves partitioning the n vertices of a graph into disjoint subsets, each containing exactly n/2 vertices, while minimizing the number of "cut" edges with an endpoint in each subset. When considered over sparse random graphs, the phase structure of the graph bisection problem displays certain familiar properties, but also some surprises. It is known that when the mean degree is below the critical value of 2 log 2, the cutsize is zero with high probability. We study how the minimum cutsize increases with mean degree above this critical threshold, finding a new analytical upper bound that improves considerably upon previous bounds. Combined with recent results on expander graphs, our bound suggests the unusual scenario that random graph bisection is replica symmetric up to and beyond the critical threshold, with a replica symmetry breaking transition possibly taking place above the threshold. An intriguing algorithmic consequence is that although the problem is NP-hard, we can find near-optimal cutsizes (whose ratio to the optimal value approaches 1 asymptotically) in polynomial time for typical instances near the phase transition.Comment: substantially revised section 2, changed figures 3, 4 and 6, made minor stylistic changes and added reference

    A quantum genetic algorithm with quantum crossover and mutation operations

    Full text link
    In the context of evolutionary quantum computing in the literal meaning, a quantum crossover operation has not been introduced so far. Here, we introduce a novel quantum genetic algorithm which has a quantum crossover procedure performing crossovers among all chromosomes in parallel for each generation. A complexity analysis shows that a quadratic speedup is achieved over its classical counterpart in the dominant factor of the run time to handle each generation.Comment: 21 pages, 1 table, v2: typos corrected, minor modifications in sections 3.5 and 4, v3: minor revision, title changed (original title: Semiclassical genetic algorithm with quantum crossover and mutation operations), v4: minor revision, v5: minor grammatical corrections, to appear in QI

    Acquiring and processing verb argument structure : distributional learning in a miniature language

    Get PDF
    Adult knowledge of a language involves correctly balancing lexically-based and more language-general patterns. For example, verb argument structures may sometimes readily generalize to new verbs, yet with particular verbs may resist generalization. From the perspective of acquisition, this creates significant learnability problems, with some researchers claiming a crucial role for verb semantics in the determination of when generalization may and may not occur. Similarly, there has been debate regarding how verb-specific and more generalized constraints interact in sentence processing and on the role of semantics in this process. The current work explores these issues using artificial language learning. In three experiments using languages without semantic cues to verb distribution, we demonstrate that learners can acquire both verb-specific and verb-general patterns, based on distributional information in the linguistic input regarding each of the verbs as well as across the language as a whole. As with natural languages, these factors are shown to affect production, judgments and real-time processing. We demonstrate that learners apply a rational procedure in determining their usage of these different input statistics and conclude by suggesting that a Bayesian perspective on statistical learning may be an appropriate framework for capturing our findings
    corecore