52 research outputs found

    Mix-and-Match System for the Enzymatic Synthesis of Enantiopure Glycerol-3-Phosphate-Containing Capsule Polymer Backbones from Actinobacillus pleuropneumoniae, Neisseria meningitidis, and Bibersteinia trehalosi

    Get PDF
    Capsule polymers are crucial virulence factors of pathogenic bacteria and are used as antigens in glycoconjugate vaccine formulations. Some Gram-negative pathogens express poly(glycosylglycerol phosphate) capsule polymers that resemble Gram-positive wall teichoic acids and are synthesized by TagF-like capsule polymerases. So far, the biotechnological use of these enzymes for vaccine developmental studies was restricted by the unavailability of enantiopure CDP-glycerol, one of the donor substrates required for polymer assembly. Here, we use CTP:glycerol-phosphate cytidylyltransferases (GCTs) and TagF-like polymerases to synthesize the poly(glycosylglycerol phosphate) capsule polymer backbones of the porcine pathogen Actinobacillus pleuropneumoniae, serotypes 3 and 7 (App3 and App7). GCT activity was confirmed by high-performance liquid chromatography, and polymers were analyzed using comprehensive nuclear magnetic resonance studies. Solid-phase synthesis protocols were established to allow potential scale-up of polymer production. In addition, one-pot reactions exploiting glycerol-kinase allowed us to start the reaction from inexpensive, widely available substrates. Finally, this study highlights that multidomain TagF-like polymerases can be transformed by mutagenesis of active site residues into single-action transferases, which in turn can act in trans to build-up structurally new polymers. Overall, our protocols provide enantiopure, nature-identical capsule polymer backbones from App2, App3, App7, App9, and App11, Neisseria meningitidis serogroup H, and Bibersteinia trehalosi serotypes T3 and T15

    Specialized Peptidoglycan Hydrolases Sculpt the Intra-bacterial Niche of Predatory Bdellovibrio and Increase Population Fitness

    Get PDF
    Bdellovibrio are predatory bacteria that have evolved to invade virtually all Gram-negative bacteria, including many prominent pathogens. Upon invasion, prey bacteria become rounded up into an osmotically stable niche for the Bdellovibrio, preventing further superinfection and allowing Bdellovibrio to replicate inside without competition, killing the prey bacterium and degrading its contents. Historically, prey rounding was hypothesized to be associated with peptidoglycan (PG) metabolism; we found two Bdellovibrio genes, bd0816 and bd3459, expressed at prey entry and encoding proteins with limited homologies to conventional dacB/PBP4 DD-endo/carboxypeptidases (responsible for peptidoglycan maintenance during growth and division). We tested possible links between Bd0816/3459 activity and predation. Bd3459, but not an active site serine mutant protein, bound β-lactam, exhibited DD-endo/carboxypeptidase activity against purified peptidoglycan and, importantly, rounded up E. coli cells upon periplasmic expression. A ΔBd0816 ΔBd3459 double mutant invaded prey more slowly than the wild type (with negligible prey cell rounding) and double invasions of single prey by more than one Bdellovibrio became more frequent. We solved the crystal structure of Bd3459 to 1.45 Å and this revealed predation-associated domain differences to conventional PBP4 housekeeping enzymes (loss of the regulatory domain III, alteration of domain II and a more exposed active site). The Bd3459 active site (and by similarity the Bd0816 active site) can thus accommodate and remodel the various bacterial PGs that Bdellovibrio may encounter across its diverse prey range, compared to the more closed active site that “regular” PBP4s have for self cell wall maintenance. Therefore, during evolution, Bdellovibrio peptidoglycan endopeptidases have adapted into secreted predation-specific proteins, preventing wasteful double invasion, and allowing activity upon the diverse prey peptidoglycan structures to sculpt the prey cell into a stable intracellular niche for replication

    Embo J.

    No full text
    F1 is a 33.5 kDa serine peptidase of the alpha/beta-hydrolase family from the archaeon Thermoplasma acidophilum. Subsequent to proteasomal protein degradation, tricorn generates small peptides, which are cleaved by F1 to yield single amino acids. We have solved the crystal structure of F1 with multiwavelength anomalous dispersion (MAD) phasing at 1.8 Angstrom resolution. In addition to the conserved catalytic domain, the structure reveals a chiefly a-helical domain capping the catalytic triad. Thus, the active site is accessible only through a narrow opening from the protein surface. Two structures with molecules bound to the active serine, including the inhibitor phenylalanyl chloromethylketone, elucidate the N-terminal recognition of substrates and the catalytic activation switch mechanism of F1. The cap domain mainly confers the specificity for hydrophobic side chains by a novel cavity system, which, analogously to the tricorn protease, guides substrates to the buried active site and products away from it. Finally, the structure of F1 suggests a possible functional complex with tricorn that allows efficient processive degradation to free amino acids for cellular recycling

    Protein Sci.

    No full text

    Biol. Chem.

    No full text

    Chymotryptic specificity determinants in the 1.0 A structure of the zinc-inhibited human tissue kallikrein 7

    No full text
    hK7 or human stratum corneum chymotryptic enzyme belongs to the human tissue kallikrein (hKs) serine proteinase family and is strongly expressed in the upper layers of the epidermis. It participates in skin desquamation but is also implicated in diverse skin diseases and is a potential biomarker of ovarian cancer. We have solved x-ray structures of recombinant active hK7 at medium and atomic resolution in the presence of the inhibitors succinyl-Ala-Ala-Pro-Phe-chloromethyl ketone and Ala-Ala-Phe-chloromethyl ketone. The most distinguishing features of hK7 are the short 70–80 loop and the unique S1 pocket, which prefers P1 Tyr residues, as shown by kinetic data. Similar to several other kallikreins, the enzyme activity is inhibited by Zn2+ and Cu2+ at low micromolar concentrations. Biochemical analyses of the mutants H99A and H41F confirm that only the metal-binding site at His99 close to the catalytic triad accounts for the noncompetitive Zn2+ inhibition type. Additionally, hK7 exhibits large positively charged surface patches, representing putative exosites for prime side substrate recognition

    Structure-Function Analyses of Human Kallikrein-related Peptidase 2 Establish the 99-Loop as Master Regulator of Activity

    Get PDF
    Background: Serine proteases KLK2 and KLK3 clear the way for spermatozoa before impregnation. Results: Enzymatic assays and structures of KLK2 elucidate its catalytic action, especially when compared with conformations of similar proteases. Conclusion: Flexible loops around the active site of serine proteases open concertedly upon substrate binding. Significance: This mechanistic model will stimulate the design of pharmaceutical inhibitors. Human kallikrein-related peptidase 2 (KLK2) is a tryptic serine protease predominantly expressed in prostatic tissue and secreted into prostatic fluid, a major component of seminal fluid. Most likely it activates and complements chymotryptic KLK3 (prostate-specific antigen) in cleaving seminal clotting proteins, resulting in sperm liquefaction. KLK2 belongs to the classical KLKs 1-3, which share an extended 99- or kallikrein loop near their non-primed substrate binding site. Here, we report the 1.9 crystal structures of two KLK2-small molecule inhibitor complexes. In both structures discontinuous electron density for the 99-loop indicates that this loop is largely disordered. We provide evidence that the 99-loop is responsible for two biochemical peculiarities of KLK2, i.e. reversible inhibition by micromolar Zn2+ concentrations and permanent inactivation by autocatalytic cleavage. Indeed, several 99-loop mutants of KLK2 displayed an altered susceptibility to Zn2+, which located the Zn2+ binding site at the 99-loop/active site interface. In addition, we identified an autolysis site between residues 95e and 95f in the 99-loop, whose elimination prevented the mature enzyme from limited autolysis and irreversible inactivation. An exhaustive comparison of KLK2 with related structures revealed that in the KLK family the 99-, 148-, and 220-loop exist in open and closed conformations, allowing or preventing substrate access, which extends the concept of conformational selection in trypsin-related proteases. Taken together, our novel biochemical and structural data on KLK2 identify its 99-loop as a key player in activity regulation

    X-ray snapshots of peptide processing in mutants of tricorn-interacting factor F1 from thermoplasma acidophilum

    No full text
    The tricorn-interacting factor F1 of the archaeon Thermoplasma acidophilum cleaves small hydrophobic peptide products of the proteasome and tricorn protease. F1 mutants of the active site residues that are involved in substrate recognition and catalysis displayed distinct activity patterns toward fluorogenic test substrates. Crystal structures of the mutant proteins complexed with peptides Phe-Leu, Pro-Pro, or Pro-Leu-Gly-Gly showed interaction of glutamates 213 and 245 with the N termini of the peptides and defined the S1 and S1′ sites and the role of the catalytic residues. Evidence was found for processive peptide cleavage in the N-to-C direction, whereby the P1′ product is translocated into the S1 site. A functional interaction of F1 with the tricorn protease was observed with the inactive F1 mutant G37A. Moreover, small angle x-ray scattering measurements for tricorn and inhibited F1 have been interpreted as formation of transient and substrate-induced complexes

    X-ray snapshots of peptide processing in mutants of tricorn-interacting factor F1 from thermoplasma acidophilum

    No full text
    The tricorn-interacting factor F1 of the archaeon Thermoplasma acidophilum cleaves small hydrophobic peptide products of the proteasome and tricorn protease. F1 mutants of the active site residues that are involved in substrate recognition and catalysis displayed distinct activity patterns toward fluorogenic test substrates. Crystal structures of the mutant proteins complexed with peptides Phe-Leu, Pro-Pro, or Pro-Leu-Gly-Gly showed interaction of glutamates 213 and 245 with the N termini of the peptides and defined the S1 and S1′ sites and the role of the catalytic residues. Evidence was found for processive peptide cleavage in the N-to-C direction, whereby the P1′ product is translocated into the S1 site. A functional interaction of F1 with the tricorn protease was observed with the inactive F1 mutant G37A. Moreover, small angle x-ray scattering measurements for tricorn and inhibited F1 have been interpreted as formation of transient and substrate-induced complexes
    • …
    corecore