361 research outputs found

    A novel receive-only liquid nitrogen (LN2)-cooled RF coil for high-resolution in vivo imaging on a 3-Tesla whole-body scanner

    Get PDF
    The design and operation of a receive-only liquid nitrogen (LN2)-cooled coil and cryostat suitable for medical imaging on a 3-T whole-body magnetic resonance scanner is presented. The coil size, optimized for murine imaging, was determined by using electromagnetic (EM) simulations. This process is therefore easier and more cost effective than building a range of coils. A nonmagnetic cryostat suitable for small-animal imaging was developed having good vacuum and cryogenic temperature performance. The LN2-cooled probe had an active detuning circuit allowing the use with the scanner's built-in body coil. External tuning and matching was adopted to allow for changes to the coil due to temperature and loading. The performance of the probe was evaluated by comparison of signal-to-noise ratio (SNR) with the same radio-frequency RF) coil operating at room temperature (RT). The performance of the RF coil at RT was also benchmarked against a commercial surface coil with a similar dimension to ensure a fair SNR comparison. The cryogenic coil achieved a 1.6- to twofold SNR gain for several different medical imaging applications: For mouse-brain imaging, a 100-mu m resolution was achieved in an imaging time of 3.5 min with an SNR of 25-40, revealing fine anatomical details unseen at lower resolutions for the same time. For heavier loading conditions, such as imaging of the hind legs and liver, the SNR enhancement was slightly reduced to 1.6-fold. The observed SNR was in good agreement with the expected SNR gain correlated with the loaded-quality factor of RF coils from the EM simulations. With the aid of this end-user-friendly and economically attractive cryogenic RF coil, the enhanced SNR available can be used to improve resolution or reduce the duration of individual scans in a number of biomedical applications

    Thermal profiles within the channel of planar gunn diodes using micro-particle sensors

    Get PDF
    The paper describes the use of a novel microparticle sensor (~3 μm diameter) and infra-red (IR) microscopy to measure the temperature profile within the active channel (typically 3 μm length and 120 μm width) of planar Gunn diodes. The method has enabled detailed temperature measurements showing an asymmetrical temperature profile along the active width of these devices. The asymmetrical temperature profile suggests a similar behaviour in the channel current density, which may contribute to the lower than expected RF output power

    Does an athlete's anger differ by sport type and gender?

    Get PDF
    Anger is an emotion that is frequently associated with a bad reputation. Anger has proven to play an effective role in certain athletic achievements; however, it is unknown which sport and gender have the athletes whose performance is most influenced by anger. In this study, we administered the STAXI-2 to determine relationships between gender and levels of athlete anger in 156 British athletes across a range of contact and non-contact sports and competitive levels (from professional/Olympians to recreational). We investigated differences in levels of anger in relation to the sport they played. Although not statistically significant, the results indicated that male athletes scored higher in trait, expression-out, anger control-out, and overall anger index, but females scored higher in state anger. The findings revealed that athletes in contact sports have higher levels of trait anger, but non contact athletes have higher levels of state anger. This study’s findings imply that anger does not influence all athletes similarly because anger is subjective to persons and sports

    Binary outflows from young stars: interaction of co-orbital jet and wind

    Get PDF
    Jets from young stellar objects provide insight into the workings of the beating heart at the centre of star-forming cores. In some cases, multiple pulsed outflows are detected such as the atomic and molecular jets from a proposed binary system in the T Tauri star HH 30. We investigate here the development and propagation of duelling atomic and molecular outflows stemming from the two stars in co-orbit. We perform a series of numerical experiments with the ZEUS-MP code with enhanced cooling and chemistry modules. The aim of this work is to identify signatures on scales of the order of 100 au. The jet sources are off the grid domain and so it is the propagation and interaction from ∼20 au out to 100 au simulated here. We find that the molecular flow from the orbiting source significantly disturbs the atomic jet, deflecting and twisting the jet and disrupting the jet knots. Regions of high ionization are generated as the atomic jet rams through the dense molecular outflow. Synthetic images in atomic and molecular lines are presented, which demonstrate identifying signatures. In particular, the structure within the atomic jet is lost and H α may trace the walls of the present CO cavity or where the walls have been recently. These results provide a framework for the interpretation of upcoming high-resolution observations

    Impact ionisation electroluminescence in planar GaAs-based heterostructure Gunn diodes:Spatial distribution and impact of doping nonuniformities

    Get PDF
    When biased in the negative differential resistance regime, electroluminescence (EL) is emitted from planar GaAs heterostructure Gunn diodes. This EL is due to the recombination of electrons in the device channel with holes that are generated by impact ionisation when the Gunn domains reach the anode edge. The EL forms non-uniform patterns whose intensity shows short-range intensity variations in the direction parallel to the contacts and decreases along the device channel towards the cathode. This paper employs Monte Carlo models, in conjunction with the experimental data, to analyse these non-uniform EL patterns and to study the carrier dynamics responsible for them. It is found that the short-range lateral (i.e., parallel to the device contacts) EL patterns are probably due to non-uniformities in the doping of the anode contact, illustrating the usefulness of EL analysis on the detection of such inhomogeneities. The overall decreasing EL intensity towards the anode is also discussed in terms of the interaction of holes with the time-dependent electric field due to the transit of the Gunn domains. Due to their lower relative mobility and the low electric field outside of the Gunn domain, freshly generated holes remain close to the anode until the arrival of a new domain accelerates them towards the cathode. When the average over the transit of several Gunn domains is considered, this results in a higher hole density, and hence a higher EL intensity, next to the anode
    • …
    corecore