1,107 research outputs found
Fungi isolated from Miscanthus and sugarcane: biomass conversion, fungal enzymes, and hydrolysis of plant cell wall polymers.
BackgroundBiofuel use is one of many means of addressing global change caused by anthropogenic release of fossil fuel carbon dioxide into Earth's atmosphere. To make a meaningful reduction in fossil fuel use, bioethanol must be produced from the entire plant rather than only its starch or sugars. Enzymes produced by fungi constitute a significant percentage of the cost of bioethanol production from non-starch (i.e., lignocellulosic) components of energy crops and agricultural residues. We, and others, have reasoned that fungi that naturally deconstruct plant walls may provide the best enzymes for bioconversion of energy crops.ResultsPreviously, we have reported on the isolation of 106 fungi from decaying leaves of Miscanthus and sugarcane (Appl Environ Microbiol 77:5490-504, 2011). Here, we thoroughly analyze 30 of these fungi including those most often found on decaying leaves and stems of these plants, as well as four fungi chosen because they are well-studied for their plant cell wall deconstructing enzymes, for wood decay, or for genetic regulation of plant cell wall deconstruction. We extend our analysis to assess not only their ability over an 8-week period to bioconvert Miscanthus cell walls but also their ability to secrete total protein, to secrete enzymes with the activities of xylanases, exocellulases, endocellulases, and beta-glucosidases, and to remove specific parts of Miscanthus cell walls, that is, glucan, xylan, arabinan, and lignin.ConclusionThis study of fungi that bioconvert energy crops is significant because 30 fungi were studied, because the fungi were isolated from decaying energy grasses, because enzyme activity and removal of plant cell wall components were recorded in addition to biomass conversion, and because the study period was 2 months. Each of these factors make our study the most thorough to date, and we discovered fungi that are significantly superior on all counts to the most widely used, industrial bioconversion fungus, Trichoderma reesei. Many of the best fungi that we found are in taxonomic groups that have not been exploited for industrial bioconversion and the cultures are available from the Centraalbureau voor Schimmelcultures in Utrecht, Netherlands, for all to use
Theory of magnetic deflagration
Theory of magnetic deflagration (avalanches) in crystals of molecular magnets
has been developed. The phenomenon resembles the burning of a chemical
substance, with the Zeeman energy playing the role of the chemical energy.
Non-destructive reversible character of magnetic deflagration, as well as the
possibility to continuously tune the flammability of the crystal by changing
the magnetic field, makes molecular magnets an attractive toy system for a
detailed study of the burning process. Besides simplicity, new features, as
compared to the chemical burning, include possibility of quantum decay of
metastable spin states and strong temperature dependence of the heat capacity
and thermal conductivity. We obtain analytical and numerical solutions for
criteria of the ignition of magnetic deflagration, and compute the ignition
rate and the speed of the developed deflagration front.Comment: 17 Pages, 17 Figure caption
Nonlinear cellular instabilities of planar premixed flames: numerical simulations of the Reactive Navier-Stokes equations
Two-dimensional compressible Reactive Navier-Stokes numerical simulations of intrinsic planar, premixed flame instabilities are performed. The initial growth of a sinusoidally perturbed planar flame is first compared with the predictions of a recent exact linear stability analysis, and it is shown the analysis provides a necessary but not sufficient test problem for validating numerical schemes intended for flame simulations. The long-time nonlinear evolution up to the final nonlinear stationary cellular flame is then examined for numerical domains of increasing width. It is shown that for routinely computationally affordable domain widths, the evolution and final state is, in general, entirely dependent on the width of the domain and choice of numerical boundary conditions. It is also shown that the linear analysis has no relevance to the final nonlinear cell size. When both hydrodynamic and thermal-diffusive effects are important, the evolution consists of a number of symmetry breaking cell splitting and re-merging processes which results in a stationary state of a single very asymmetric cell in the domain, a flame shape which is not predicted by weakly nonlinear evolution equations. Resolution studies are performed and it is found that lower numerical resolutions, typical of those used in previous works, do not give even the qualitatively correct solution in wide domains. We also show that the long-time evolution, including whether or not a stationary state is ever achieved, depends on the choice of the numerical boundary conditions at the inflow and outflow boundaries, and on the numerical domain length and flame Mach number for the types of boundary conditions used in some previous works
Quantum Magnetic Deflagration in Mn12 Acetate
We report controlled ignition of magnetization reversal avalanches by surface
acoustic waves in a single crystal of Mn12 acetate. Our data show that the
speed of the avalanche exhibits maxima on the magnetic field at the tunneling
resonances of Mn12. Combined with the evidence of magnetic deflagration in Mn12
acetate (Suzuki et al., cond-mat/0506569) this suggests a novel physical
phenomenon: deflagration assisted by quantum tunneling.Comment: 4 figure
Posterior-Scleritis: Case Report of an Uncommon Immune-Related Adverse Event in the Treatment of Advanced Endometrial Cancer
As Immune checkpoint inhibitors are being expanded for use in gynecologic malignancies, rare immune-related adverse events are more frequently being reported. Here we describe a 63-year-old with Stage IIIB mismatch repair deficient uterine adenocarcinoma who underwent six cycles of carboplatin and paclitaxel with partial response but persistent disease. She was then started on single agent pembrolizumab. After six cycles of pembrolizumab, she developed bilateral vision changes and was diagnosed with posterior scleritis. Pembrolizumab was held and she was treated with oral prednisone, with rapid resolution of symptoms. One month after completion of prednisone, vision changes were again reported and she was restarted on a longer oral prednisone course. She then underwent definitive surgical management consisting of a total laparoscopic hysterectomy and bilateral salpingo-oophorectomy, with final pathology of benign endometrial hyperplasia. She has completed her steroid course without any symptoms. Given her complete pathologic response, she was subsequently placed into surveillance and is currently without evidence of disease. Prompt recognition and treatment of this rare immune-related adverse event led to the prevention of potential permanent, debilitating outcomes
Propagation of Avalanches in Mn-acetate: Magnetic Deflagration
Local time-resolved measurements of fast reversal of the magnetization of
single crystals of Mn12-acetate indicate that the magnetization avalanche
spreads as a narrow interface that propagates through the crystal at a constant
velocity that is roughly two orders of magnitude smaller than the speed of
sound. We argue that this phenomenon is closely analogous to the propagation of
a flame front (deflagration) through a flammable chemical substance.Comment: 5 pages, 5 figure
Classical generalized constant coupling model for geometrically frustrated antiferromagnets
A generalized constant coupling approximation for classical geometrically
frustrated antiferromagnets is presented. Starting from a frustrated unit we
introduce the interactions with the surrounding units in terms of an internal
effective field which is fixed by a self consistency condition. Results for the
magnetic susceptibility and specific heat are compared with Monte Carlo data
for the classical Heisenberg model for the pyrochlore and kagome lattices. The
predictions for the susceptibility are found to be essentially exact, and the
corresponding predictions for the specific heat are found to be in very good
agreement with the Monte Carlo results.Comment: 4 pages, 3 figures, 2 columns. Discussion about the zero T value of
the pyrochlore specific heat correcte
- …