6,221 research outputs found

    Unification and Logarithmic Space

    Full text link
    We present an algebraic characterization of the complexity classes Logspace and NLogspace, using an algebra with a composition law based on unification. This new bridge between unification and complexity classes is inspired from proof theory and more specifically linear logic and Geometry of Interaction. We show how unification can be used to build a model of computation by means of specific subalgebras associated to finite permutations groups. We then prove that whether an observation (the algebraic counterpart of a program) accepts a word can be decided within logarithmic space. We also show that the construction can naturally represent pointer machines, an intuitive way of understanding logarithmic space computing

    Thermoregulation in wheelchair tennis-How to manage heat stress?

    Get PDF
    Founded in 1976 and having become a full medal sport at the 1992 Barcelona Paralympics, the popularity of wheelchair tennis continues to grow. With the exception of the “double-bounce rule,” wheelchair and able-bodied tennis follow the same rules. Most of tennis matches are played in cool outdoor conditions or climate-controlled indoor venues. Nonetheless, it is common for top-level players to be exposed to hot (>30°C) and/or humid (>70% rH) conditions during competition or training [Wet Bulb Globe Temperature (WBGT) of 28°C or greater]. At the 2009 Australian Open championship, Australia's former world No 1 Daniela Di Toro, spoke about the high court temperatures (often above 40°C)—“You've got the direct heat overhead as well as radiant heat all around you that has been absorbed by the court and your chair, and it really is extremely full-on.” Heat stress may not only threaten the quality of play, but could potentially pose a risk to the players' health. Detailed description of thermal, physiological and perceptual responses of able-bodied players to simulated competitions can be found in the literature (Fernandez Fernandez et al., 2006), while the investigations that have involved Paralympic tennis players are rare. Evaluating the specific game requirements is a prerequisite of more thoroughly understanding the physiology of wheelchair tennis. This task is, however, not easy due to numerous modulating internal (i.e., variety of physiological impairment, competitive standard, playing style, gender and body composition) and external (i.e., environmental conditions, ball type and court surface) factors of tennis match intensity, in addition to high individual variability in physiological responses to match play. Moreover, it is difficult to develop and implement universal safety standards and guidelines to account for all of the environmental scenarios. Well aware of potential health risks, the International Tennis Federation (ITF) medical commission has implemented policies for effectively reducing heat illness risk to safeguard wheelchair tennis players' health when competing in environmentally challenging conditions (http://www.itftennis.com/media/166656/166656.pdf). In addition to these existing procedures in wheelchair tennis the question still exist as to what preventive countermeasures can be implemented when it gets hot

    Editorial: High-Intensity Exercise in Hypoxia: Beneficial Aspects and Potential Drawbacks

    Get PDF
    With the recent development of new altitude training methods (Millet et al., 2013; Girard et al., 2017), the question of the specific central and peripheral adaptations to high-intensity exercise in hypoxia is now crucial..

    Combining heat stress and moderate hypoxia reduces cycling time to exhaustion without modifying neuromuscular fatigue characteristics.

    Get PDF
    PURPOSE: This study investigated the isolated and combined effects of heat [temperate (22 °C/30 % rH) vs. hot (35 °C/40 % rH)] and hypoxia [sea level (FiO2 0.21) vs. moderate altitude (FiO2 0.15)] on exercise capacity and neuromuscular fatigue characteristics. METHODS: Eleven physically active subjects cycled to exhaustion at constant workload (66 % of the power output associated with their maximal oxygen uptake in temperate conditions) in four different environmental conditions [temperate/sea level (control), hot/sea level (hot), temperate/moderate altitude (hypoxia) and hot/moderate altitude (hot + hypoxia)]. Torque and electromyography (EMG) responses following electrical stimulation of the tibial nerve (plantar-flexion; soleus) were recorded before and 5 min after exercise. RESULTS: Time to exhaustion was reduced (P < 0.05) in hot (-35 ± 15 %) or hypoxia (-36 ± 14 %) compared to control (61 ± 28 min), while hot + hypoxia (-51 ± 20 %) further compromised exercise capacity (P < 0.05). However, the effect of temperature or altitude on end-exercise core temperature (P = 0.089 and P = 0.070, respectively) and rating of perceived exertion (P > 0.05) did not reach significance. Maximal voluntary contraction torque, voluntary activation (twitch interpolation) and peak twitch torque decreased from pre- to post-exercise (-9 ± 1, -4 ± 1 and -6 ± 1 % all trials compounded, respectively; P < 0.05), with no effect of the temperature or altitude. M-wave amplitude and root mean square activity were reduced (P < 0.05) in hot compared to temperate conditions, while normalized maximal EMG activity did not change. Altitude had no effect on any measured parameters. CONCLUSION: Moderate hypoxia in combination with heat stress reduces cycling time to exhaustion without modifying neuromuscular fatigue characteristics. Impaired oxygen delivery or increased cardiovascular strain, increasing relative exercise intensity, may have also contributed to earlier exercise cessation

    Near-field properties of plasmonic nanostructures with high aspect ratio

    Full text link
    Using the Green's dyad technique based on cuboidal meshing, we compute the electromagnetic field scattered by metal nanorods with high aspect ratio. We investigate the effect of the meshing shape on the numerical simulations. We observe that discretizing the object with cells with aspect ratios similar to the object's aspect ratio improves the computations, without degrading the convergency. We also compare our numerical simulations to finite element method and discuss further possible improvements

    Making Principles of Marketing Case Studies Tangible Through Computer-Aided Interactivity

    Get PDF
    A web-based principles of marketing case study module was developed over a two year period between marketing students and faculty and instructional design students, staff, and faculty. The module was tested with five sections of principles of marketing students to find out whether or not students perceive a difference in learning marketing concepts and problem-solving skills when working on a paper case with no interactivity versus a Web-based case study module with computer-aided interactivity. This study further investigated whether students find a web-based case more enjoyable than a paper case and if students are more likely to be interested in marketing as a field of study after using a web-based case study module than if they had only done a paper case. Although students indicated that the web-based interactive module enabled them to learn the marketing concepts significantly more easily than the paper case study, other findings showed unexpected results

    Polarization state of the optical near-field

    Full text link
    The polarization state of the optical electromagnetic field lying several nanometers above complex dielectric structures reveals the intricate light-matter interaction that occurs in this near-field zone. This information can only be extracted from an analysis of the polarization state of the detected light in the near-field. These polarization states can be calculated by different numerical methods well-suited to near--field optics. In this paper, we apply two different techniques (Localized Green Function Method and Differential Theory of Gratings) to separate each polarisation component associated with both electric and magnetic optical near-fields produced by nanometer sized objects. The analysis is carried out in two stages: in the first stage, we use a simple dipolar model to achieve insight into the physical origin of the near-field polarization state. In the second stage, we calculate accurate numerical field maps, simulating experimental near-field light detection, to supplement the data produced by analytical models. We conclude this study by demonstrating the role played by the near-field polarization in the formation of the local density of states.Comment: 9 pages, 11 figures, accepted for publication in Phys. Rev.

    Breakpoints in ventilation, cerebral and muscle oxygenation, and muscle activity during an incremental cycling exercise.

    Get PDF
    The aim of this study was to locate the breakpoints of cerebral and muscle oxygenation and muscle electrical activity during a ramp exercise in reference to the first and second ventilatory thresholds. Twenty-five cyclists completed a maximal ramp test on an electromagnetically braked cycle-ergometer with a rate of increment of 25 W/min. Expired gazes (breath-by-breath), prefrontal cortex and vastus lateralis (VL) oxygenation [Near-infrared spectroscopy (NIRS)] together with electromyographic (EMG) Root Mean Square (RMS) activity for the VL, rectus femoris (RF), and biceps femoris (BF) muscles were continuously assessed. There was a non-linear increase in both cerebral deoxyhemoglobin (at 56 ± 13% of the exercise) and oxyhemoglobin (56 ± 8% of exercise) concomitantly to the first ventilatory threshold (57 ± 6% of exercise, p > 0.86, Cohen's d < 0.1). Cerebral deoxyhemoglobin further increased (87 ± 10% of exercise) while oxyhemoglobin reached a plateau/decreased (86 ± 8% of exercise) after the second ventilatory threshold (81 ± 6% of exercise, p < 0.05, d > 0.8). We identified one threshold only for muscle parameters with a non-linear decrease in muscle oxyhemoglobin (78 ± 9% of exercise), attenuation in muscle deoxyhemoglobin (80 ± 8% of exercise), and increase in EMG activity of VL (89 ± 5% of exercise), RF (82 ± 14% of exercise), and BF (85 ± 9% of exercise). The thresholds in BF and VL EMG activity occurred after the second ventilatory threshold (p < 0.05, d > 0.6). Our results suggest that the metabolic and ventilatory events characterizing this latter cardiopulmonary threshold may affect both cerebral and muscle oxygenation levels, and in turn, muscle recruitment responses
    corecore