4,514 research outputs found

    Day-length is central to maintaining consistent seasonal diversity in marine bacterioplankton

    Get PDF
    Marine bacterial diversity is vast, but seasonal variation in diversity is poorly understood. Here we present the longest bacterial diversity time series consisting of monthly (72) samples from the western English Channel over a 6 year period (2003-2008) using 747,494 16SrDNA-V6 amplicon-pyrosequences. Although there were characteristic cycles for each phylum, the overall community cycle was remarkably stable year after year. The majority of taxa were not abundant, although on occasion these rare bacteria could dominate the assemblage. Bacterial diversity peaked at the winter solstice and showed remarkable synchronicity with day-length, which had the best explanatory power compared to a combination of other variables (including temperature and nutrient concentrations). Day-length has not previously been recognised as a major force in structuring microbial communities

    Bias in culture-independent assessments of microbial biodiversity in the global ocean

    Get PDF
    On the basis of 16S rRNA gene sequencing, the SAR11 clade of marine bacteria has almost universal distribution, being detected as abundant sequences in all marine provinces. Yet SAR11 sequences are rarely detected in fosmid libraries, suggesting that the widespread abundance may be an artefact of PCR cloning and that SAR 11 has a relatively low abundance. Here the relative abundance of SAR11 is explored in both a fosmid library and a metagenomic sequence data set from the same biological community taken from fjord surface water from Bergen, Norway. Pyrosequenced data and 16S clone data confirmed an 11-15% relative abundance of SAR11 within the community. In contrast not a single SAR11 fosmid was identified in a pooled shotgun sequenced data set of 100 fosmid clones. This under-representation was evidenced by comparative abundances of SAR11 sequences assessed by taxonomic annotation; functional metabolic profiling and fragment recruitment. Analysis revealed a similar under-representation of low-GC Flavobacteriaceae. We speculate that the fosmid bias may be due to DNA fragmentation during preparation due to the low GC content of SAR11 sequences and other underrepresented taxa. This study suggests that while fosmid libraries can be extremely useful, caution must be used when directly inferring community composition from metagenomic fosmid libraries

    Supporting participatory livestock feed improvement using the Feed Assessment Tool (FEAST)

    Get PDF
    Livestock production is central to the livelihoods of smallholder farmers in low- and middle-income countries, but livestock are often poorly fed which limits their potential for reducing poverty. Efforts to improve livestock nutrition are often driven by supply-push thinking and fail to engage meaningfully with farmers and the realities they face. The Feed Assessment Tool (FEAST) was developed as a way of involving farmers more closely in decision making on livestock feed improvement. FEAST is a participatory tool which uses focus group discussions and individual farmer interviews to develop a broad overview of the livestock farming system. FEAST has been applied in many countries in the last 10 years. Examples of intensive use come from the Accelerated Value Chain Development Project in Kenya and the Rwanda Dairy Development Project in Rwanda. In both cases the tool was used to inform feed options with strong input from farmers. Although the primary purpose of FEAST is to support improved feed strategies at farm level, the data collected through the FEAST app and published in FEAST reports are a rich information resource that can be useful for developing broader system-level understanding of livestock feed issues. FEAST data can be uploaded into a global data repository where they are available for researchers. These data are also used to generate visualizations of key feed metrics further extending the use of secondary data. FEAST is an example of a participatory tool that moves decision making in the direction of farmers, while providing insights to researchers working across farming systems. Its widespread use across many countries is an indication that it fills a gap in in the livestock feed development space. Its novelty lies in bridging the knowledge gap (both ways) between livestock researchers and small-scale livestock keepers

    Cation and buffer specific effects on the DNA-lipid interaction

    Get PDF
    Knowledge of DNA - lipid layer interactions is key for the development of biosensors, synthetic nanopores, scaffolds, and gene-delivery systems. These interactions are strongly affected by the ionic composition of the solvent. We have combined quartz crystal microbalance (QCM) and ellipsometry measurements to reveal how pH, buffers and alkali metal chloride salts affect the interaction of DNA with lipid bilayers (DOTAP/DOPC 30:70 in moles). We found that the thickness of the DNA layer adsorbed onto the lipid bilayer decreased in the order citrate > phosphate > Tris > HEPES. The effect of cations on the thickness of the DNA layer decreased in the order (K+ > Na+ > Cs+ ∌ Li+). Rationalization of the experimental results requires that adsorption, due to cation specific charge screening, is driven by the simultaneous action of two mechanisms namely, the law of matching water affinities for kosmotropes (Li+) and ion dispersion forces for chaotropes (Cs+). The outcome of these two opposing mechanisms is a “bell-shaped” specific cations sequence. Moreover, a superimposed buffer specificity, which goes beyond the simple effect of pH regulation, further modulated cation specificity. In summary, DNA-lipid bilayer interactions are maximized if citrate buffer (50 mM, pH 7.4) and KCl (100 mM) are used
    • 

    corecore