267 research outputs found

    Solar-neutrino physics with Borexino

    Get PDF
    The Borexino solar-neutrino detector is a high-radiopurity lowthreshold liquid scintillator that detects solar neutrinos by means of the elastic scattering νe → νe reaction. The detector, located at the Laboratori Nazionali del Gran Sasso (LNGS, Italy) and has now measured solar neutrinos from the 7Be, 8B and pep components. Terrestrial neutrinos (geoneutrinos) have also been observed

    Low Energy Antimatter Physics

    Get PDF
    We will review the motivations and the general features of experiments devoted to testing fundamental laws with antimatter at low energies, namely the study of CPT invariance and the Weak Equivalence Principle. A summary of the recent experimental results will be presented

    Gravitational Waves, Event Horizons and Black Hole Observation: A New Frontier in Fundamental Physics

    Get PDF
    The observation of supermassive black holes by the Event Horizon Telescope Collaboration and the detection of gravitational waves emitted during the merging phase of compact binary objects to stellar-mass black holes by the LIGO–Virgo–KAGRA collaboration constitute major achievements of modern science. Gravitational wave signals emitted by stellar-mass black holes are being used to test general relativity in an unprecedented way in the regime of strong gravitational fields, as well as to address other physics questions such as the formation of heavy elements or the Hawking Area Theorem. These discoveries require further research in order to answer critical questions about the population density and the formation processes of binary systems. The detection of supermassive black holes considerably extends the range of scientific investigation by making it possible to probe the structure of spacetime around the horizon of the central mass of our galaxy as well as other galaxies. The huge amount of information collected by the VLBI worldwide network will be used to investigate general relativity in a further range of physical conditions. These investigations hold the potential to pave the way for the detection of quantum-mechanical effects such as a possible graviton mass. In this paper we will review, in a cursory way, some of the results of both the LIGO–Virgo–KAGRA and the EHT collaborations

    Matter-wave interferometry: towards antimatter interferometers

    Full text link
    Starting from an elementary model and refining it to take into account more realistic effects, we discuss the limitations and advantages of matter-wave interferometry in different configurations. We focus on the possibility to apply this approach to scenarios involving antimatter, such as positrons and positronium atoms. In particular, we investigate the Talbot-Lau interferometer with material gratings and discuss in details the results in view of the possible experimental verification.Comment: 18 pages; 8 figure

    Geoneutrinos in Borexino

    Full text link
    This paper describes the Borexino detector and the high-radiopurity studies and tests that are integral part of the Borexino technology and development. The application of Borexino to the detection and studies of geoneutrinos is discussed.Comment: Conference: Neutrino Geophysics Honolulu, Hawaii December 14-16, 200

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Measuring the free fall of antihydrogen

    Get PDF
    After the first production of cold antihydrogen by the ATHENA and ATRAP experiments ten years ago, new second-generation experiments are aimed at measuring the fundamental properties of this anti-atom. The goal of AEGIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is to test the weak equivalence principle by studying the gravitational interaction between matter and antimatter with a pulsed, cold antihydrogen beam. The experiment is currently being assembled at CERN's Antiproton Decelerator. In AEGIS, antihydrogen will be produced by charge exchange of cold antiprotons with positronium excited to a high Rydberg state (n > 20). An antihydrogen beam will be produced by controlled acceleration in an electric-field gradient (Stark acceleration). The deflection of the horizontal beam due to its free fall in the gravitational field of the earth will be measured with a moire deflectometer. Initially, the gravitational acceleration will be determined to a precision of 1%, requiring the detection of about 105 antihydrogen atoms. In this paper, after a general description, the present status of the experiment will be reviewed
    corecore