35 research outputs found

    On the assembly of the leukotriene biosynthetic complex in intact cells and its pharmacological inhibition

    Get PDF
    Leukotrienes (LT) are potent lipid mediators derived from arachidonic acid (AA) via the 5-LO pathway [1]. AA is converted to 5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid (5-HPETE), which in turn is metabolized to LTA4. In the cell, 5-LO activity depends on a crucial translocation from the soluble compartment to the nuclear membrane-bound 5-lipoxygenase-activating protein (FLAP) to achieve endogenously released AA as substrate for LT biosynthesis [2]. Although 5-LO and LT biosynthesis is known for more than 35 years, a role in the development of cardiovascular diseases (CVD), cancer, and Alzheimer`s disease besides chronic allergic diseases like asthma has only recently been discovered [3]. Inspired by the therapeutic potential, BRP-7 was identified as a new class of FLAP inhibitors with high efficacy to inhibit LT biosynthesis in vitro and in vivo. Additionally, a powerful mammalian stable expression system of 5-LO and FLAP in HEK293 cells was established to clearly determine putative FLAP inhibitors and study FLAPs undisputed significance for cellular LT biosynthesis. FLAP increases cellular 5-LO product formation by enhancing the LTA4 synthase activity, and supports 5-LO membrane accumulation. For the first time, we provide strong evidence for an effective in situ interaction of native 5-LO and FLAP at the nuclear membrane in primary human leukocytes and stable transfected HEK293 cells by proximity ligation assay (PLA). 5-LO/FLAP interaction occurs delayed to 5-LO activity and translocation. FLAP antagonists prevent the 5-LO/FLAP interaction, and AA and/or 5-HPETE function as regulating molecules for the 5-LO/FLAP complex assembly

    5-Lipoxygenase-activating protein rescues activity of 5-lipoxygenase mutations that delay nuclear membrane association and disrupt product formation

    Get PDF
    © FASEB. Leukotrienes (LTs) are proinflammatory lipid mediators formed from arachidonic acid in a 2-step reaction catalyzed by 5-lipoxygenase (5-LOX) requiring the formation of 5-HPETE [5(S)-hydroperoxy-6-trans-8,11,14-ciseicosatetraenoic acid] and its subsequent transformation to LTA4 . 5-LOX is thought to receive arachidonic acid from the nuclear membrane-embedded 5-LOX-activating protein (FLAP). The crystal structure of 5-LOX revealed an active site concealed by F177 and Y181 (FY cork). We examined the influence of the FY cork on 5-LOX activity and membrane binding in HEK293 cells in the absence and presence of FLAP. Uncapping the 5-LOX active site by mutation of F177 and/or Y181 to alanine (5-LOX-F177A, 5-LOX-Y181A, 5-LOX-F177/Y181A) resulted in delayed and diminished 5-LOX membrane association in A23187-stimulated cells. For 5-LOX-F177A and 5-LOX-F177/Y181A, formation of 5-LOX products was dramatically reduced relative to 5-LOX-wild type (wt). Strikingly, coexpression of FLAP in A23187-activated HEK293 cells effectively restored formation of 5-H(p)ETE (5-hydroxy- and 5-peroxy-6-trans-8,11,14-cis-eicosatetraenoic acid) by these same 5-LOX mutants (≈60-70% 5-LOX-wt levels) but not of LTA4 hydrolysis products. Yet 5-LOX-Y181A generated 5-H(p)ETE at levels comparable to 5-LOX-wt but reduced LTA4 hydrolysis products. Coexpression of FLAP partially restored LTA4 hydrolysis product formation by 5-LOX-Y181A. Together, the data suggest that the concealed FY cork impacts membrane association and that FLAP may help shield an uncapped active site

    A 5‑lipoxygenase-specific sequence motif impedes enzyme activity and confers dependence on a partner protein

    Get PDF
    © 2018 Elsevier B.V. Leukotrienes (LT) are lipid mediators of the inflammatory response that play key roles in diseases such as asthma and atherosclerosis. The precursor leukotriene A 4 (LTA 4 ) is synthesized from arachidonic acid (AA) by 5‑lipoxygenase (5-LOX), a membrane-associated enzyme, with the help of 5‑lipoxygenase-activating protein (FLAP), a nuclear transmembrane protein. In lipoxygenases the main chain carboxylate of the C-terminus is a ligand for the non-heme iron and thus part of the catalytic center. We investigated the role of a lysine-rich sequence (KKK 653–655 ) 20 amino acids upstream of the C-terminus unique to 5-LOX that might displace the main-chain carboxylate in the iron coordination sphere. A 5-LOX mutant in which KKK 653–655 is replaced by ENL was transfected into HEK293 cells in the absence and presence of FLAP. This mutant gave ~20-fold higher 5-LOX product levels in stimulated HEK cells relative to the wild-type 5-LOX. Co-expression of the enzymes with FLAP led to an equalization of 5-LOX products detected, with wild-type 5-LOX product levels increased and those from the mutant enzyme decreased. These data suggest that the KKK motif limits 5-LOX activity and that this attenuated activity must be compensated by the presence of FLAP as a partner protein for effective LT biosynthesis

    BRP-187: A potent inhibitor of leukotriene biosynthesis that acts through impeding the dynamic 5-lipoxygenase/5-lipoxygenase-activating protein (FLAP) complex assembly

    Get PDF
    The pro-inflammatory leukotrienes (LTs) are formed from arachidonic acid (AA) in activated leukocytes, where 5-lipoxygenase (5-LO) translocates to the nuclear envelope to assemble a functional complex with the integral nuclear membrane protein 5-LO-activating protein (FLAP). FLAP, a MAPEG family member, facilitates AA transfer to 5-LO for efficient conversion, and LT biosynthesis critically depends on FLAP. Here we show that the novel LT biosynthesis inhibitor BRP-187 prevents the 5-LO/FLAP interaction at the nuclear envelope of human leukocytes without blocking 5-LO nuclear redistribution. BRP-187 inhibited 5-LO product formation in human monocytes and polymorphonuclear leukocytes stimulated by lipopolysaccharide plus N-formyl-methionyl-leucyl-phenylalanine (IC50=7-10nM), and upon activation by ionophore A23187 (IC50=10-60nM). Excess of exogenous AA markedly impaired the potency of BRP-187. Direct 5-LO inhibition in cell-free assays was evident only at >35-fold higher concentrations, which was reversible and not improved under reducing conditions. BRP-187 prevented A23187-induced 5-LO/FLAP complex assembly in leukocytes but failed to block 5-LO nuclear translocation, features that were shared with the FLAP inhibitor MK886. Whereas AA release, cyclooxygenases and related LOs were unaffected, BRP-187 also potently inhibited microsomal prostaglandin E2 synthase-1 (IC50=0.2ÎŒM), another MAPEG member. In vivo, BRP-187 (10mg/kg) exhibited significant effectiveness in zymosan-induced murine peritonitis, suppressing LT levels in peritoneal exudates as well as vascular permeability and neutrophil infiltration. Together, BRP-187 potently inhibits LT biosynthesis in vitro and in vivo, which seemingly is caused by preventing the 5-LO/FLAP complex assembly and warrants further preclinical evaluation

    Communication between human macrophages and epithelial cancer cell lines dictates lipid mediator biosynthesis

    No full text
    In tumors, cancer cells coexist and communicate with macrophages that can promote tumorigenesis via pro-inflammatory signals. Lipid mediators (LMs), produced mainly by cyclooxygenases (COXs) or lipoxygenases (LOs), display a variety of biological functions with advantageous or deleterious consequences for tumors. Here, we investigated how the communication between human monocyte-derived M2-like macrophages (MDM) and cancer cells affects LM biosynthesis using LM metabololipidomics. Coculture of human MDM with human A549 epithelial lung carcinoma cells, separated by a semipermeable membrane, increased LM formation by MDM upon subsequent activation. Strongest effects were observed on 5-LO-derived LM. While expression of the 5-LO pathway was not altered, p38 MAPK and the downstream MAPKAPK-2 that phosphorylates and stimulates 5-LO were more susceptible for activation in MDM upon precedent coculture with A549 cells as compared to monocultures. Accordingly, the p38 MAPK inhibitor Skepinone-L selectively prevented this increase in 5-LO product formation. Also, 5-LO-/15-LO-derived LM including lipoxin A(4), resolvin D2 and D5 were elevated after coculture with A549 cells, correlating to increased 15-LO-1 protein levels. In contrast to cancer cells, coincubation with non-transformed human umbilical vein endothelial cells (HUVEC) did not affect LM production in MDM. Vice versa, MDM increased COX-2 protein expression and COX-mediated prostanoid formation in cancer cells. Conclusively, our data reveal that the communication between MDM and cancer cells can strikingly modulate the biosynthetic capacities to produce bioactive LM with potential relevance for tumor biology

    Differential role of vacuolar (H+)-ATPase in the expression and activity of cyclooxygenase-2 in human monocytes

    No full text
    Monocytes are professional immune cells that produce abundant levels of pro-inflammatory eicosanoids including prostaglandins and leukotrienes during inflammation. Vacuolar (H+)-ATPase (V-ATPase) is critically involved in a variety of inflammatory processes including cytokine trafficking and lipid mediator biosynthesis. However, its role in eicosanoid biosynthetic pathways in monocytes remains elusive. Here, we present a differential role of V-ATPase in the expression and in the activity of cyclooxygenase (COX)-2 in human monocytes. Pharmacological targeting of V-ATPase increased the expression of COX-2 protein in lipopolysaccharide-stimulated primary monocytes, which was paralleled by enhanced phosphorylation of p38 MAPK and ERK-1/2, without impacting the NF-kappa B and SAPK/JNK pathways. Targeting of both p38 MAPK and ERK-1/2 pathways showed that the kinase pathways are crucial for COX-2 expression in human monocytes. Despite increased COX-2 protein levels, however, suppression of V-ATPase activity impaired the biosynthesis of COX- and also of 5-lipoxygenase (LOX)-derived lipid mediators in monocytes without affecting 12-/15-LOX products, assessed by a metabololipidomics approach using UPLC-MS-MS analysis. Our results indicate that changes in the intracellular pH may contribute to suppression of COX-2 and 5-LOX activities. We suggest that V-ATPase on one hand limits COX-2 protein levels via restricting p38 MAPK and ERK-1/2 activation, while on the other hand it governs the cellular activity of COX-2 through appropriate adjustment of the intracellular pH

    5‐Lipoxygenase‐activating protein rescues activity of 5‐lipoxygenase mutations that delay nuclear membrane association and disrupt product formation

    No full text
    Leukotrienes (LTs) are proinflammatory lipid mediators formed from arachidonic acid in a 2-step reaction catalyzed by 5-lipoxygenase (5-LOX) requiring the formation of 5-HPETE [5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid] and its subsequent transformation to LTA(4). 5-LOX is thought to receive arachidonic acid from the nuclear membrane–embedded 5-LOX-activating protein (FLAP). The crystal structure of 5-LOX revealed an active site concealed by F177 and Y181 (FY cork). We examined the influence of the FY cork on 5-LOX activity and membrane binding in HEK293 cells in the absence and presence of FLAP. Uncapping the 5-LOX active site by mutation of F177 and/or Y181 to alanine (5-LOX-F177A, 5-LOX-Y181A, 5-LOX-F177/Y181A) resulted in delayed and diminished 5-LOX membrane association in A23187-stimulated cells. For 5-LOX-F177A and 5-LOX-F177/Y181A, formation of 5-LOX products was dramatically reduced relative to 5-LOX–wild type (wt). Strikingly, coexpression of FLAP in A23187-activated HEK293 cells effectively restored formation of 5-H(p)ETE (5-hydroxy- and 5-peroxy-6-trans-8,11,14-cis-eicosatetraenoic acid) by these same 5-LOX mutants (≈60–70% 5-LOX-wt levels) but not of LTA(4) hydrolysis products. Yet 5-LOX-Y181A generated 5-H(p)ETE at levels comparable to 5-LOX-wt but reduced LTA(4) hydrolysis products. Coexpression of FLAP partially restored LTA(4) hydrolysis product formation by 5-LOX-Y181A. Together, the data suggest that the concealed FY cork impacts membrane association and that FLAP may help shield an uncapped active site.—Gerstmeier, J., Newcomer, M. E., Dennhardt, S., Romp, E., Fischer, J., Werz, O., Garscha, U. 5-Lipoxygenase-activating protein rescues activity of 5-lipoxygenase mutations that delay nuclear membrane association and disrupt product formation

    Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products

    No full text
    Leukotrienes (LT) are lipid mediators of the inflammatory response that are linked to asthma and atherosclerosis. LT biosynthesis is initiated by 5-lipoxygenase (5-LOX) with the assistance of the substrate-binding 5-LOX-activating protein at the nuclear membrane. Here, we contrast the structural and functional consequences of the binding of two natural product inhibitors of 5-LOX. The redox-type inhibitor nordihydroguaiaretic acid (NDGA) is lodged in the 5-LOX active site, now fully exposed by disordering of the helix that caps it in the apo-enzyme. In contrast, the allosteric inhibitor 3-acetyl-11-keto-beta-boswellic acid (AKBA) from frankincense wedges between the membrane-binding and catalytic domains of 5-LOX, some 30 Å from the catalytic iron. While enzyme inhibition by NDGA is robust, AKBA promotes a shift in the regiospecificity, evident in human embryonic kidney 293 cells and in primary immune cells expressing 5-LOX. Our results suggest a new approach to isoform-specific 5-LOX inhibitor development through exploitation of an allosteric site in 5-LOX
    corecore