156 research outputs found

    Evolution of Spur-Length Diversity in Aquilegia Petals is Achieved solely through Cell-Shape Anisotropy

    Get PDF
    The role of petal spurs and specialized pollinator interactions has been studied since Darwin. Aquilegia petal spurs exhibit striking size and shape diversity, correlated with specialized pollinators ranging from bees to hawkmoths in a textbook example of adaptive radiation. Despite the evolutionary significance of spur length, remarkably little is known about Aquilegia spur morphogenesis and its evolution. Using experimental measurements, both at tissue and cellular levels, combined with numerical modelling, we have investigated the relative roles of cell divisions and cell shape in determining the morphology of the Aquilegia petal spur. Contrary to decades-old hypotheses implicating a discrete meristematic zone as the driver of spur growth, we find that Aquilegia petal spurs develop via anisotropic cell expansion. Furthermore, changes in cell anisotropy account for 99 per cent of the spur-length variation in the genus, suggesting that the true evolutionary innovation underlying the rapid radiation of Aquilegia was the mechanism of tuning cell shape

    Synthesis and Assembly of Nonspherical Hollow Silica Colloids Under Confinement

    Get PDF
    Hard peanut-shaped colloids were synthesized and organized into a degenerate crystal (DC), a phase previously observed only in simulations. In this structure, particle lobes tile a triangular lattice while their orientations uniformly populate the three underlying crystalline directions

    Der Konflikt in Afghanistan : Historischer und gesellschaftlicher Hintergrund, Evolution und Lageentwicklung ā€“ ein Positionspapier

    Get PDF
    This study is part of a larger project, the aim of which is to elucidate ā€œmental health nursesā€ attitudes towards their patients'. In this study, nurses' and patients' attitudes are described from the perspective of both parties using a qualitative approach. The informants were selected from a rehabilitation unit for young adults, below 40, suffering from psychosis at a psychiatric clinic that provides acute psychiatric care. The informant group consisted of three dyads: three patients with various diagnoses and three nurses with primary responsibility for the patients' daily care. The aim of this particular study was to extend our preliminary understanding of nurses' attitudes towards psychiatric patients in the context of psychiatric in-patient care, by elucidating the patient's ā€œinnerā€ picture of her/his past, present and future and the nurse's picture of the same patient's past, present and future. Data were collected and analysed using a phenomenological-hermeneutic approach and the narrative picturing technique. For each picture and group, 15 related sub-themes emerged, on the basis of which six themes were formulated. The findings show that the nurses overrate their own importance when it comes to the patient's well-being on the ward. All the nurses emphasize confirmation and safety as the basis of their nursing care, while in the patient's picture the nurses represent a replication of childhood demands, which probably means that nursing care risks becoming a continuation of the patient's childhood estrangement

    Slab melting as a barrier to deep carbon subduction

    Get PDF
    Interactions between crustal and mantle reservoirs dominate the surface inventory of volatile elements over geological time, moderating atmospheric composition and maintaining a lifesupporting planet1. While volcanoes expel volatile components into surface reservoirs, subduction of oceanic crust is responsible for replenishment of mantle reservoirs2,3. Many natural, ā€˜superdeepā€™ diamonds originating in the deep upper mantle and transition zone host mineral inclusions, indicating an affinity to subducted oceanic crust4ā€“7. Here we show that the majority of slab geotherms will intersect a deep depression along the melting curve of carbonated oceanic crust at depths of approximately 300 to 700 kilometres, creating a barrier to direct carbonate recycling into the deep mantle. Low-degree partial melts are alkaline carbonatites that are highly reactive with reduced ambient mantle, producing diamond. Many inclusions in superdeep diamonds are best explained by carbonate meltā€“peridotite reaction. A deep carbon barrier may dominate the recycling of carbon in the mantle and contribute to chemical and isotopic heterogeneity of the mantle reservoir

    Beliefs and intentions in RET

    No full text
    • ā€¦
    corecore