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The role of petal spurs and specialized pollinator interactions has been studied since Darwin.
Aquilegia petal spurs exhibit striking size and shape diversity, correlated with specialized pollina-
tors ranging from bees to hawkmoths in a textbook example of adaptive radiation. Despite the
evolutionary significance of spur length, remarkably little is known about Aquilegia spur morpho-
genesis and its evolution. Utilizing experimental measurements, both at tissue and cellular levels,
combined with numerical modeling, we have investigated the relative roles of cell divisions and cell
shape in determining the morphology of the Aquilegia petal spur. Contrary to decades old hypothe-
ses implicating a discrete meristematic zone as the driver of spur growth, we find that Aquilegia
petal spurs develop via anisotropic cell expansion. Furthermore, changes in cell anisotropy account
for 99% of the spur length variation in the genus, suggesting that the true evolutionary innovation
underlying the rapid radiation of Aquilegia was the mechanism of tuning cell shape.
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1. INTRODUCTION

Floral spurs are tubular pockets that grow out from developing floral organs (figure 1), typically with nectar-producing

glands at their distal tip. Nectar spurs have evolved multiple times across the angiosperms often in association

with dramatic speciation events, such as in the families Tropaeolaceae (Nasturtium), Fumariaceae (Bleeding-Heart),

and Lentibulariaceae (Bladderwort) [1]. A particularly striking example of morphological diversity is seen in the

genus Aquilegia, commonly known as columbine. Species of Aquilegia vary dramatically in spur length over a

16-fold range, matching the tongue lengths of their major pollinators, i.e., bees, hummingbirds and hawkmoths [2]

(figure 1; electronic supplementary material; figures S1 and S2). The fit between the pollinator’s tongue length

and a species’ spur length is apparently driven by selection acting to maximize pollen removal and receipt [2, 3],

resulting in very rapid evolution of spur length at the time of speciation, and thereby contributing to the rapid

radiation of the genus [2]. Despite their critical role in the ecology and diversification of Aquilegia, remarkably

little is understood about spur morphogenesis and its evolution. Here we have used molecular, developmental and

morphometric approaches to understand spur morphogenesis and the developmental basis of spur diversity in Aquilegia.

2. SPUR DEVELOPMENT: CONNECTING TISSUE MORPHOGENESIS WITH CELL SHAPE

Since Darwin [4], botanists have appreciated the evolutionary significance of petal spurs, yet spur development remains

largely uncharacterized. In Aquilegia, traditional botanical hypotheses based on early histological studies hold that

spur development is driven by meristematic knobs flanking the attachment point in the developing petal [5, 6]. In this

∗These authors contributed equally to this work.
†Author for correspondence (ekramer@oeb.harvard.edu)
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scenario, continued cell divisions combined with cell expansion are the primary driver of spur growth. Since Tepfer

[5] the idea that spur growth occurs by essentially adding material one cell at a time has been widely accepted [6, 7]

but has never been verified.

We experimentally tested this meristem hypothesis in Aquilegia by marking cell divisions with in situ hybridiza-

tion [8] of AqHistone4 (AqHIS4 ), which marks DNA-replicating cells, in developing petal spurs (figure 2, electronic

supplementary material; section M1). This analysis revealed that while cell divisions are initially diffuse throughout

the petal primordium, they cease early in development in a wave that begins at the distal petal tip and progresses

toward the site of the initiating spur (figures 2a-d). Cell divisions are no longer visible anywhere in the young spur

once it achieves a cup-like shape of size ∼5 mm (figure 2d). Furthermore, by directly counting the number of cells

in a single cell file extending along the entire spur length, we determined that cell divisions completely cease early

in development once the spur reaches a length of ∼5-9 mm (figure 2e, electronic supplementary material; section

M2). Together, these results unequivocally demonstrate that spur growth is not driven by a meristematic zone. Thus,

cell expansion, not cell division, must be the primary driver of spur outgrowth once the prepattern is established

by localized cell division. However, isotropic cell expansion alone would simply result in a scaled-up version of the

initial cup-like spur; clearly an additional mechanism is needed to achieve the observed slender, elongated morphology

(figure 1, electronic supplementary material; figures S1 and S2).

To investigate if and how cellular mechanisms are responsible for spur sculpting, we measured cell size and shape

along a continuous transect of the outer (abaxial) epidermis in developing A. coerulea ‘Origami’ red/white spurs

(hereafter referred to as A. coerulea) at 11 developmental stages following the cessation of cell division and until

spur maturity (figure 3a,b). Since cells are consistently oriented along the long axis of the spur, we defined and

measured cell length l(s) and cell width w(s) at a distance s (in mm) from the nectary tip, for a total of ∼7000 cell

measurements (figure 3b, electronic supplementary material; figure S4 and sections M3 and M4). Given that petal

lamina thickness is virtually uniform throughout the spur (electronic supplementary material; figure S4), cell size can

be characterized by cell area A(s) = lw, while cell shape is characterized by the anisotropy defined as ε(s) = l/w along

the spur. We see that although cell area increases uniformly along the entire spur during development (electronic

supplementary material; figure S5), cell anisotropy varies along the length of the spur (figure 3b,c). To characterize

the temporal development of the spur, we scaled the distance s by the instantaneous length of the spur L, a measure

of developmental time, so that the scaled distance z = s/L varies from z = 0 at the nectary tip to z = 1 at the

attachment point (figure 3a) at each developmental stage. This allowed us to compare cell anisotropy ε(z) through

development (figure 3c) and shows that although young spurs start out with ε(z) ≈ 1 (cells are approximately

isotropic), as development progresses ε(z) increases non-uniformly along the length of the spur, reaching a maximum

value just above the nectary. In figure 3d, the maximum cell anisotropy εmax is plotted against the spur length L and

demonstrates that spur development is associated with increasing cell anisotropy.

In addition to cell morphology measurements during development, we also recorded the shape of the entire spur at

each stage. While cell columns along the length of the spur twist slightly during growth (electronic supplementary
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material; figure S6), spur shape remains cylindrically symmetric throughout development, but becomes increasingly

slender and elongated. Thus spur shape can be quantified by measuring its radial profile r(s) (figure 3; electronic

supplementary material; figures S7-S9, electronic supplementary material; section M5). To correlate cell morphology

changes during development with the observed shape of the spur, we started with an ‘initial’ spur shape obtained

by averaging radial profiles of two young (∼8 mm) A. coerulea spurs. This model spur profile was then numerically

‘grown’ utilizing experimental measurements of cell area A(s) and cell anisotropy ε(s) to achieve spur profiles at the

same developmental stages shown in figure 3a. The profiles were then rotated about the long axis of the spur to

generate spur shapes at each developmental stage. The good agreement between the numerical and experimental

spur profiles and shapes (figure 3e,f ), with no adjustable parameters, demonstrates the critical role of cell shape in

spur morphogenesis and directly connects measured cellular level data with organ level morphology. This is further

confirmed by comparing the profiles calculated using only cell area changes while ignoring cell anisotropy, which result

in deformed, short wide spurs (electronic supplementary material; figure S10 and section M6).

Having linked changes in cell anisotropy to the sculpting of spur morphology, we sought to experimentally

perturb cell shape. In plant cells the cytoskeleton constrains the direction of cell elongation by orienting cellulose

deposition [9]. Since disruption of the cytoskeleton should perturb cell anisotropy and therefore spur morphosis,

we treated developing A. chrysantha spurs with oryzalin, a microtubule depolymerization agent [10, 11] (details in

electronic supplementary material; figure S11 and section M7). As shown in figure 4, the treated spur is much shorter

and wider than untreated spurs from the same flower. Examination of cells in the treated tissue verified that changes

in cell area A are unaffected, while cell anisotropy remains at ε ≈ 1 (figure 4b,c) for all time points. These findings

further confirm that anisotropic cell expansion, not extended meristematic growth, determines spur morphogenesis.

3. CELL ANISOTROPY AND SPUR LENGTH DIVERSITY

The essential role of cell anisotropy in A. coerulea spur morphogenesis raised the question of how variations in this

parameter contribute to evolutionarily significant diversification of spur shape and length. Since mature petal spurs

in Aquilegia range in length from L ≈ 1-15 cm, with the majority in the 2-6 cm range [2, 12], four Aquilegia species

were studied to sample this entire range: A. vulgaris (final spur length Lf ≈ 2.4 cm), A. canadensis (Lf ≈ 2.6 cm),

A. coerulea (Lf ≈ 5.1 cm), and A. longissima (Lf ≈ 15.9 cm) (figures 1 and 5a). These species also represent a

breadth of associated pollinators from bee (short, curled spurs in A. vulgaris) to hummingbird (short straight spurs

in A. canadensis) to hawkmoth (long slender spurs in A. coerulea and A. longissima). For each species, cellular

measurements from 2-4 biological replicates were imaged at multiple developmental stages, using ESEM at three

equally spaced locations along the axis of the spur and one point on the petal blade, for a total of ∼6500 independent

cellular measurements (electronic supplementary material; figures S12 and S13 and section M8).

There are three possible contributors to the diversity in Aquilegia spur length: variation in cell number, cell size,

or cell anisotropy. We have addressed the issue of cell number in two independent ways. First, as described above,

we have demonstrated that all cell divisions cease in A. vulgaris petals by ∼ 5 mm. At this stage, spurs from the
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other study species are indistinguishable, as are their cell size and shape, implying that cell number should not vary

considerably between species. To verify this, we have also directly counted the number of cells in mature spurs

from A. canadensis, A. coerulea, and A. longissima flowers (figure 2e). We find that the number of cells in each

species varies by less than 30%± 21%, whereas spur length varies by up to 600% (electronic supplementary material;

section M2).

Having eliminated cell number as the primary contributor to spur length diversity, we expect to find that changes

in cell size and/or cell anisotropy will be correlated with relative increase in spur length for each species. In figure

5b, we show that the relative increase in cell area, Af/Ai (final cell area at spur maturity/cell area at the initial

stage) is uncorrelated with the ratio of final to initial spur length, Lf/Li. Here, the initial spur length Li is the

length of the spur once cell divisions have ceased, about 7 ± 2 mm (figure 2e). However, the relative increase in

cell anisotropy, εf/εi, is strongly correlated with the ratio of final to initial spur length (figure 5c). The R2 value

of 0.99 indicates that variations in cell anisotropy account for 99% of the observed variation in mature spur length.

Furthermore, each of the species follows the same growth curve (figure 5d), where total petal length, Lp, including the

blade, is reported because spur length measurements in attached young petals are obstructed by sepals. Thus, length

differences between these species are achieved through variations in the duration of cell elongation. For example,

the developmental duration of the shortest spur studied, A. vulgaris, is ∼10 days, while in the longest spur studied,

A. longissima, this duration is ∼16 days, so that longer periods of cell elongation lead to higher cell anisotropy, and

consequently longer petal spurs.

4. DISCUSSION

We have shown that the Aquilegia petal spur is initially formed by a short period of localized cell divisions followed by

an extended process of oriented cell elongation. Furthermore, diversity in spur length is mediated by variation in the

degree of anisotropic cell elongation rather than the number or size of cells. The tight correlation of cell anisotropy

with spur length suggests that even the extreme outlier A. longissima can reach its extraordinary spur length simply

by increasing a single developmental parameter. Thus, minimal elaboration of an existing developmental mechanism

can rapidly generate spur length variation in the genus in concert with a specific ecological pressure, the presence

of a pollinator with a dramatically longer tongue. Interestingly, there are taxa within the genera Semiaquilegia and

Urophysa, which are very closely related to Aquilegia, that lack elongated spurs but produce small nectary cups

or extremely short spurs [6, 14, 15], similar to very early developmental stages in Aquilegia. This implies that the

evolutionary innovation underlying spur formation and the rapid radiation of Aquilegia may have been the mechanism

of tuning cell anisotropy, which led to the elaboration of of the nectary cup.

It is useful to consider the sculpting observed in Aquilegia spurs in a broader context of tissue elongation, which

is at the heart of organ morphogenesis. Tissue elongation without cell division can occur via a combination of two

mechanisms: convergent extension driven by cell migration in animals [16], or changes in cell shape anisotropy in

instances where cells are immobile, such as in plants [17]. In tissues with active cell division, oriented divisions

followed by isotropic cell expansion can also result in tissue elongation. Since any of these microscopic reorganizations
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would lead to indistinguishable macroscopic deformations, all of these possibilities must be considered in phenotypic

analysis of tissue morphogenesis [17, 18]. In the context of plant morphodynamics [19], our study has emphasized

that in addition to differential cell division and isotropic cell expansion, differential cell anisotropy can also play a

dominant role in evolutionarily significant shape change. Petal spur sculpting and spur length diversity across the

genus Aquilegia, even in its most extreme expressions, can be explained solely through variation in cell anisotropy.

Developmental perturbations using oryzalin have further demonstrated that changes in cell anisotropy are dependent

on cytoskeletal arrangement. We know from work done in model plants that several major hormone pathways, as well

as perturbations of the cytoskeleton itself, can influence oriented cell elongation [10, 20, 21]. Contrary to what has

been suggested in the Lamiales [13], our developmental measurements imply that the duration of cell elongation plays

a critical role in determining spur length. Genes underlying both hormone pathways that influence cell anisotropy

and developmental duration should be explored as candidates for the control of spur development in Aquilegia as well

as for the genetic basis of new pollinator syndromes that are associated with speciation of the genus. Diversification

in association with pollinators is often associated with correlated shape variation in floral organs such as stamens,

styles, corolla tubes, petals, and sepals [1, 22, 23], and begs the question of whether tuning cell anisotropy is exploited

in other systems that exhibit evolutionarily significant morphological diversity.
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FIG. 1: Aquilegia flowers exhibit considerable spur length diversity. All scale bars equal 1 cm. (a) A. vulgaris. (b)
A. canadensis. (c) A. coerulea. (d) A. longissima.

FIG. 2: Cell divisions cease very early in spur development. (a-d) In situ localization of AqHIS4 in developing A. vulgaris
flowers was used to determine the pattern and extent of cell divisions in early petal development. AqHIS4 expression, visualized
by purple staining, marks cell divisions. Arrowheads, petals; Arrow, initiating spur. (a) Two young A. vulgaris flower buds
(in brackets) showing ubiquitous AqHIS4 expression indicating diffuse cell divisions. Scale bar equals 0.5 mm. (b) Older flower
showing ubiquitous cell divisions in the petal while cell divisions have ceased in the stamens (St). Scale bar equals 0.5 mm.
(c) A. vulgaris petal with initiating spur. Cell divisions are most concentrated at the initiating spur and have ceased in the
tip of the developing petal as indicated by a dotted line. Scale bar equals 1 mm. (d) A. vulgaris spur of length L ≈ 5 mm
with no AqHIS4 expression evident, indicating all cell divisions have ceased. Scale bar equals 1 mm. (e) The number of cells
in a single cell file extending the entire length of developing A. canadensis, A. coerulea, and A. longissima spurs, counted from
the attachment point to the nectary. The number of cells plateaus to a constant value early in development when the spur is
∼5-9 mm long. Errorbars indicate counting errors.

FIG. 3: Cell anisotropy drives A. coerulea petal spur development. (a) Developmental series of A. coerulea petals.
Scale bar equals 1 cm. Both cellular measurements and spur radius r are recorded at the position s as measured from the
nectary tip along the length of the spur. To compare between developmental stages, the position along the spur is also
measured by z, which increases from 0 at the nectary to 1 at the attachment point. (b) Light microscope images are analyzed
to determine cell anisotropy ε = l/w and cell area A = lw at the position z along the spur. (c) Waterfall plot of ε versus z
at different developmental stages measured by the spur length L. (d) The maximum cell anisotropy εmax is highly correlated
with spur length L. (e) Using measurements of cell anisotropy and cell area, in concert with an initial spur determined by
averaging experimental spur profiles, numerically calculated spur shapes are generated without any free parameters at the
same developmental stages shown in panel (a). Numerical spurs are shaded according to local cell anisotropy. (f ) Numerically
calculated spur profiles (circles) are overlaid on experimentally measured spur profiles (solid curves).

FIG. 4: Cytoskeleton perturbations decouple isotropic cell expansion from cell anisotropy. (a) Oryzalin (Oz), a
microtubule depolymerization agent, was applied to the entire surface of single Aquilegia spurs after they had achieved into a
short tubular shape of length L ≈ 1 cm (right). Untreated petal from the same flower is shown as a control (left). Photos of
petals were taken ∼6 days after initial application of oryzalin. Scale bar equals 1 cm. (b) Left: Anisotropically shaped cells
from untreated spur. Right: Image of oryzalin treated spur showing isotropically shaped cells. (c) Comparison of cell area A
and anisotropy ε between cells from oryzalin treated spurs (N = 270) and from untreated samples (N = 127).

FIG. 5: Cell anisotropy plays an essential role in spur length diversity. (a) Petals from four different Aquilegia
species. From left to right: A. longissima, A. coerulea, A. canadensis, and A. vulgaris. Scale bar equals 1 cm. Insets for
each species show a cellular region of identical width ∼30 µm. (b) The ratio of final to initial spur length Lf/Li versus the
fractional increase in cell area Af/Ai is plotted to show that changes in spur length are not correlated with changes in cell area
(R2 = 0.233, Pearson’s r = −0.482). (c) Lf/Li is plotted versus the fractional increase in cell anisotropy εf/εi, measured at
z ≈ 1/3, indicating that spur length diversity is characterized by cell anisotropy (R2 = 0.990, Pearson’s r = 0.995). (d) Total
petal length Lp is plotted versus time, demonstrating that all species follow the same growth curve but differ in developmental
duration. Vertical errorbars indicate range in initial spur length Li and horizontal errorbars in (b),(c) are comparable to marker
size.
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Evolution of spur length diversity in Aquilegia petals is achieved solely through cell
shape anisotropy: Electronic supplementary material

Joshua R. Puzey,1, ∗ Sharon J. Gerbode,2, 3, ∗ Scott A. Hodges,4 Elena M. Kramer,1, † and L. Mahadevan1, 2

1Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
2School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138

3Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
4Department of Ecology, Evolution and Marine Biology,

University of California, Santa Barbara, CA 93106

M1. CELL DIVISION MEASUREMENTS: AqHistone4 in situ METHODS

All plants for in situ hybridization and cell morphology studies were grown in environmentally controlled growth

chambers and greenhouses at Harvard University at approximately 20 C with long-day conditions of 16hr light/8 hr

dark. Seeds of A. coerulea Origami red/white were obtained from Swallowtail Seeds (Santa Rosa, CA).

AqHistone4 (AqHIS4 ) in situ hybridization was performed as described in [9]. AqHIS4 marks DNA-replicating

cells. Inflorescences for in situ hybridization were collected from A. vulgaris, fixed under vacuum in FAA, dehydrated,

and embedded in Paraplast. For in situ probe preparation, AqHIS4 was PCR amplified from cDNA using AqHIS4F

5’- AAGGCGTGGTGGTGTTAAGCGTATCA and AqHIS4R 5’- GAATTACAAGAAAGTAGTAGATCAGAATC-

CAAC. Amplified fragments were cloned using TOPO-TA (Invitrogen) and digoxigenin-labeled RNA probes were

synthesized from linearized plasmids. AqHIS4 hybridized sections were stained with calcofluor and imaged with white

and fluorescent light. Imaging was performed on a Leitz DMRD microscope using a Retiga EXi camera (Harvard

Imaging Center).

M2. CELL COUNTING METHODS

The continuous scanning technique described in supplementary section M3 was used to generate 27 composite images

for A. canadensis, A. coerulea, and A. longissima spurs at various developmental stages. For each composite spur

image cells were counted manually starting at the attachment point and continuing to the nectary. Generating

continuous cellular resolution images for A. vulgaris was not possible due to thick cuticular waxes. Composite scans

of A. longissima spurs greater than 15 mm were not possible because the narrow spur radius prevented a deep

focusing depth while maintaining cell focus and cutting and flattening the spur resulted in crushed cells. Counting

errors, typically of about 40 cells, arose due to several factors: (1) uncertainty in the precise position of the attachment

point, (2) zones of imperfect image quality, and (3) inherent error due to counting statistics.

The variation in number of cells at spur maturity was measured for A. canadensis, A. coerulea, A. longissima.

The mean number of cells for spurs greater than ∼ 8 mm long was calculated for each species, and the counting

error in this mean was estimated as described above. Taking the mean number of cells in mature A. canadensis as a
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reference point, we calculated the fractional variation from this value in A. coerulea and A. longissima. This process

showed that there are 4% ± 24% fewer cells in A. coerulea than A. canadensis, and there are 30% ± 21% more cells

in A. longissima than A. canadensis, where the errors in these values were propagated from the error in the number

of cells for each species.

M3. LIGHT MICROSCOPE METHODS

For continuous A. coerulea ‘Origami’ red/white (hereafter referred to as A. coerulea) cellular data shown in Fig. 3,

spurs were imaged using Zeiss AxioCam Mrc digital camera mounted on a Zeiss AxioImager.Z2 microscope (Harvard

Imaging Center). Petals were cut longitudinally through the attachment point and nectary, mounted on glass slide

with a thin layer of fingernail polish and imaged immediately in order to prevent any drying and distortion of

cells. This allowed for direct microscope imaging of the cells of the outer (abaxial) epidermis. Since Aquilegia petal

spurs remain only about 3 cell layers thick during all stages of development, the morphological trends observed

in the epidermis are a good indicator of cell behavior throughout the thickness of the spur. Moreover, the in situ

studies indicated that cell divisions ceased throughout all layers of the spurs at the same time, suggesting that cell

expansion must be responsible for spur elongation across all cell layers. Overlapping images were taken at the same

magnification along the entire length of the spur. Individual images were stitched together using Adobe Photoshop

CS3, creating a composite image (Fig. SS4).

M4. CELL AND SPUR MORPHOLOGY MEASUREMENTS

(a) Cell anisotropy

High resolution composite light microscope images of entire spurs were analyzed using custom MATLAB software to

measure average cell length 〈l(s)〉 and cell width 〈w(s)〉 along the length of the spur, where s is the distance from

the nectary tip in mm (Fig. SS4). The average cell anisotropy was then calculated as ε(s) = 〈l(s)〉
〈w(s)〉 . In order to more

clearly compare cell anisotropy for spurs of different instantaneous spur lengths L, we expressed the cell anisotropy

ε(z) as a function of the scaled distance z = s/L. We note that this scaled distance z increases from z = 0 at the

nectary tip to z = 1 at the attachment point, as shown in Fig. SS4.

(b) Spur radius profile

Digital photographs (Nikon D40x) of entire spurs were analyzed using custom MATLAB software to measure

variation in spur radius along the length of the spur. The radius r(s) (in mm) was determined using the appropriate

scale bar for each image. To compare spur radius profiles between spurs of different instantaneous lengths L, we

scaled both the radius r and the distance s by L. Defining R = r/L and z = s/L, we compared scaled radial profiles

R(z) to illuminate differences in spur shape during development. As described in more detail in supplementary

section M5 below, this scaled radial profile minimizes differences in overall size and highlights changes in spur shape.
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M5. A SIMPLIFIED QUANTITATIVE MODEL OF SPUR DEVELOPMENT

During development, Aquilegia petal spurs both increase in overall size and change shape from a initial cup into a

long, slender tube. Our microscope images of individual spur cells have demonstrated that each cell increases in size A

and anisotropy ε throughout spur development. Our goal in modeling this process is to illuminate how these changes

in size and shape at the cellular level determine morphological changes at the organ level.

As shown in Fig. 1 and Fig. SS1, the tubular shapes of developing Aquilegia petal spurs vary between species and

are not perfectly conical. However, as shown in Fig 3F the radial profiles of A. coerulea are nearly linear. Therefore,

a geometrically simple model spur shape can be used to provide intuition for the morphosis of actual spurs. In

Fig. SS8A, we illustrate a simplified two dimensional model spur composed of initially square ‘cells’ with area A0 and

anisotropy ε0 = 1. The shape of any cylindrically symmetric spur can be mathematically described by a function

r(s), where r is the radius of the spur at a distance s from its tip. For the model spur depicted in Fig. SS8A, this

radial function is linear: r(s) = R0

L0
s+H0, where R0, H0, and L0 are the geometric parameters defined in Fig. SS8A.

In order to explore how the combination of cell expansion and increased cell anisotropy affects the overall spur shape,

in Fig. SS8B we depict the same spur following isotropic cell expansion by a factor α = A/A0 and increased cell

anisotropy by a factor λ = ε/ε0. Here A is the new cell area and ε is the new cell anisotropy. In this simplified model,

all the cells change size and shape uniformly throughout the spur. The shape of the spur after this cell transformation

is described by the radial profile

r(s) =
R

L
s+H

=
1

λ

R0

L0
s+

√
α

λ
H0,

where L =
√
αλL0, R =

√
α
λR0, H =

√
α
λH0, as shown in Fig. SS8B. We note that r(s) depends on both the cell

anisotropy factor λ and the cell expansion factor α. In order to eliminate the effect of overall isotropic expansion of

the spur as a result of cell expansion, we define R = r/L and z = s/L and write the scaled radial profile R(z) as

R(z) =
1√
αλL0

[
1

λ

R0

L0
z

(√
αλL0 +

√
α

λ
H0

)]
=

1

λ

(
R0

L0
z +

H0

L0

)
.

The function R(z) does not depend on the cell expansion factor α, and thus it isolates the effect of increasing cell

anisotropy on spur shape. Finally, it is possible to eliminate the effect on spur shape due to both cell expansion and

increased cell anisotropy by defining R̃ = λR, for which the radial profile R̃(z) =
(
R0

L0
z + H0

L0

)
does not depend on α

or λ.

During Aquilegia petal spur development, the cells both expand and become increasingly anisotropic; in the model

spur this corresponds to a simultaneous increase in both α and λ. To illustrate such development, in Fig. SS9 we

plot r(s), R(z), and R̃(z) for a model spur with increasing values of α and λ. In Fig. SS9A, the r(s) curves show
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the unscaled radial profiles of the model spur throughout development from the initial red curve to the purple curve.

These profiles are the result of the combined effects of increased cell anisotropy and cell expansion, and depict unscaled

spur development. In Fig. SS9B the scaled R(z) curves factor out isotropic expansion and isolate the anisotropic

contribution to spur morphosis. In Fig. SS9C, where both expansion and anisotropic effects are canceled, the R̃(z)

curves collapse onto a single line.

Aquilegia petal spurs are not entirely linear, and our experiments have demonstrated that cell anisotropy ε

varies along the length of the spur (Fig. 3). Nevertheless, the above description provides a useful framework for

comparing the shapes of spurs with approximately linear radial profiles, such as A. coerulea and A. longissima.

In Fig. SS10 we plot r(s), R(z), and R̃(z) throughout spur development for both A. coerulea (Fig. SS10A-C ) and

A. longissima (Fig. SS10D-F ). By comparing the R(z) curves, which highlight the effect of cell anisotropy, it is

clear that as cell anisotropy increases throughout development, the spur becomes more slender relative to its length

(Fig. SS10B and E ). In order to calculate R̃(z) for both A. coerulea and A. longissima spurs, the value of λ must

be determined at each developmental stage. Independent average ε measurements collected from cellular ESEM

images as described in supplementary section M7 were used to calculate λ. The values of λ calculated from these

independently measured cellular data result in collapsed radial profiles R̃(z) (Fig. SS10C and F ). The fact that the

R̃(z) curves in both Fig. SS10C and Fig. SS10F collapse onto a central shape indicates that the observed morphosis

of the spurs is driven by the experimentally measured change in cell anisotropy ε for both species.

M6. NUMERICAL IMPLEMENTATIONS OF SPUR GROWTH

The simplified model of spur development described in the previous section overlooks the nonlinear spur shapes

and nonuniform cell aspect ratio ε(z) in Aquilegia petal spurs. Despite this inaccuracy, the simplified model for

spur morphosis still captures the essential trend of how cell expansion and anisotropy change spur shape throughout

development, as shown by the scaled radius profiles in Fig. SS10C and F. A more precisely realistic model of spur

development can be obtained by combining cellular level experimental data with tissue level radial profiles of young

spurs.

As a starting point for numerical spur growth calculations, a generic ‘initial’ spur shape is determined by averaging

two radial profiles from young A. coerulea spurs with length L = 8 mm. This averaged model spur profile was rotated

around the long axis of the spur to create a cylindrically symmetric spur shape. Since our cellular measurements are

binned into 13 points along the length of the spur at each developmental stage, we also binned the model spur into

13 points, and ‘grew’ each point according to available cellular measurements. Specifically, each of the 12 segments

of the model profile was treated as approximately linear, with uniform cell anisotropy ε and cell area A. Within each

segment, the framework of the simplified spur model described in the previous section was used to predict how each

segment would develop. The ith point (si, ri) from the initial profile was mapped to its new position (s′i, r
′
i) according
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to the relations

r′i =

√
αi
λi

ri

s′i =

 0 i = 0

s′i−1 +
√
αiλi (si − si−1) i > 0

where εi and αi are taken from cellular measurements corresponding to the position of point i at the developmental

stage of interest. The resulting numerically calculated profiles (s′, r′) (plotted in Fig. 3F ) were finally rotated about

the long axis of the spur to create the three dimensional spurs depicted in Fig. 3F. In stark contrast to these spurs,

the numerical spurs shown in Fig. SS11 were calculated using only cell area data, ignoring the effect of cell anisotropy.

Clearly these numerically calculated spurs do not accurately capture the shapes of developing A. coerulea spurs.

M7. TREATMENT OF Aquilegia SPURS WITH ORYZALIN

Oryzalin was suspended in lanolin at a concentration of ∼10 µM and applied topically to developing spurs. Exploiting

the fact that all Aquilegia species have five petals per flower, one petal was treated, while the remaining four petals

were used as controls.

M8. ENVIRONMENTAL SCANNING ELECTRON MICROSCOPY (ESEM) METHODS

ESEM images were collected using Zeiss-EVO Environmental Scanning Electron Microscope (Harvard University,

Center for Nanoscale Science). Aquilegia petal spurs are very fragile and collapse upon dehydration, rendering

high-vacuum SEM impossible. Thus, ESEM was performed at low vacuum (∼ 10 Pa) which allowed for immediate

wet imaging of untreated and undamaged samples. This technique also allowed for higher throughput since time

consuming high vacuum tissue preparation methods could be avoided.

ESEM images of spur cells were collected from A. vulgaris, A. canadensis, A. coerulea, and A. longissima. ESEM

images were taken at four points along the axis of the petal (Fig. SS14). Data for seven petal lengths were collected

for A. coerulea, four petal lengths for A. vulgaris, four petal lengths for A. longissima, and four petal lengths for A.

canadensis. Two to four biological replicates were imaged for each of the four points along the spur at each petal

length for a total of ∼ 228 distinct mean cell measurements. Cellular morphological data was collected from the

ESEM images using ImageJ EllipseFitter (http://rsbweb.nih.gov/ij/).



6

FIG. S1: Developmental series of Aquilegia petals. (a) A. longissima. (b) A. canadensis. (c) A. vulgaris. All scale bars
equal 1 cm.
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FIG. S2: Developmental series of Aquilegia flowers. (a) A. coerulea ‘Origami’ red/white. (b) A. canadensis. (c) A. vul-
garis. All scale bars equal 1 cm.
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FIG. S3: Direct measurement of cell number during development.Typical cellular resolution image shown with overlaid
dots indicating manually counted cells.
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FIG. S4: Typical composite microscope image of a spur, used for measuring cell morphology along the length of
the spur. Custom MATLAB software was used to measure the length l(s) and width w(s) of cells throughout the spur. The
average length and width at a distance s (in mm) from the nectary tip was then used to calculate the average cell anisotropy
ε(s) and area A(s). Left, image of entire petal. Center, composite microscope image of lower portion of spur. Right, full
magnification microscope image showing cellular resolution.

FIG. S5: Spur lamina thickness measurements. (a) Cross sections of spurs viewed under light microscopy to measure
lamina thickness. (b) Lamina thickness does not vary significantly with z in young and mature spurs.
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FIG. S6: Cell area along the length of the spur throughout development. Unlike cell anisotropy, cell area increase is
virtually uniform throughout the spur during spur elongation.

FIG. S7: A. longissima spur with twisted cell files. Black smudges are ink marks added to aide measurement of twisting
during growth. Scale bar equals 1cm.

FIG. S8: Illustration of a simplified two dimensional trapezoidal model of a spur. (a) The initial spur shape is
described by the radius function r(s) = R0

L0
s+H0. (b) Following both uniform cell expansion by a factor α and an increase in

cell anisotropy by a factor λ, the spur takes on a new shape described by r(s) = R
L
s+H.
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FIG. S9: Radius functions for a model spur as α and λ are increased to mimic spur development. The initial
spur parameters R0, H0, and L0 remain constant throughout development. (a) The unscaled radius function r(s) shows the
change in both size and shape of the model spur from its initial shape (red curve) to its final shape (purple curve). (b) The

scaled radius function R(z) isolates the effect of cell anisotropy. (c) The fully scaled radius function R̃(z) eliminates the effects
of both isotropic cell expansion and increased cell anisotropy.

FIG. S10: Aquilegia spur radial profiles r(s), R(z), and R̃(z) throughout development. (a - c), A. coerulea. (d - f ),

A. longissima. The values of λ used to calculate R̃(z) are determined from independent ESEM measurements of cell anisotropy.

Definitions of r(s), R(z), and R̃(z) are provided in the text.
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FIG. S11: Numerically calculated spurs omitting the effect of cell anisotropy have the wrong shape. (a) Devel-
opmental series of A. coerulea petals. Scale bar equals 1 cm. (b) Using cell area measurements while ignoring cell anisotropy
measurements, the same shortest numerical spur shown in Fig. 2e is grown to each of the developmental stages shown in panel
(a).

FIG. S12: Oryzalin treatment of Aquilegia chrysantha petals. Oz, oryzalin. All spurs were treated at spur length
L ≈ 1 cm corresponding to an early developmental stage. Untreated petals from the corresponding flower are shown as
controls. Photos of petals were taken ∼ 6 days after initial application of oryzalin. (a - b) Oryzalin was applied in one strip (as
indicated by the line) on the developing spur. Inhibiting cell anisotropy via oryzalin on one side of the spur, while the cells on
the opposite side continue to elongate, results in a curved spur. All four untreated petals are shown alongside oryzalin treated
petal in panel (a). (c) Oryzalin was applied on the entire surface of the developing Aquilegia spur. All scale bars equal 1 cm.
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FIG. S13: Cell area A and cell anisotropy ε measured at position C on the spur and at position Blade on the
petal blade, for four Aquilegia species. Cell data was collected from ESEM images taken at multiple developmental stages
for each species, for a total of ∼ 6500 cell measurements. (a) Cell area A is plotted against percent final petal length Lp[f ]
for each species at both petal positions, C and Blade. Cell area increases uniformly along the entire length of the petal for
all species. (b) Cell anisotropy ε is plotted against percent final petal length Lp[f ] for each species. Cell anisotropy remains
constant in the petal blade for all species, while in the spur cell anisotropy increases more dramatically in species with longer
spurs.

FIG. S14: Relative location of data collection points Blade, A, B, and C. Representative ESEM images from each
location are shown below.




