9,501 research outputs found

    Low-lying even parity meson resonances and spin-flavor symmetry

    Get PDF
    A study is presented of the ss-wave meson-meson interactions involving members of the ρ\rho-nonet and of the π\pi-octet. The starting point is an SU(6) spin-flavor extension of the SU(3) flavor Weinberg-Tomozawa Lagrangian. SU(6) symmetry breaking terms are then included to account for the physical meson masses and decay constants, while preserving partial conservation of the axial current in the light pseudoscalar sector. Next, the TT-matrix amplitudes are obtained by solving the Bethe Salpeter equation in coupled-channel with the kernel built from the above interactions. The poles found on the first and second Riemann sheets of the amplitudes are identified with their possible Particle Data Group (PDG) counterparts. It is shown that most of the low-lying even parity PDG meson resonances, specially in the JP=0+J^P=0^+ and 1+1^+ sectors, can be classified according to multiplets of the spin-flavor symmetry group SU(6). The f0(1500)f_0(1500), f1(1420)f_1(1420) and some 0+(2++)0^+(2^{++}) resonances cannot be accommodated within this SU(6) scheme and thus they would be clear candidates to be glueballs or hybrids. Finally, we predict the existence of five exotic resonances (I3/2I \ge 3/2 and/or Y=2|Y|=2) with masses in the range 1.4--1.6 GeV, which would complete the 27127_1, 10310_3, and 10310_3^* multiplets of SU(3)\otimesSU(2).Comment: 43 pages, 2 figures, 61 tables. Improved discussion of Section II. To appear in Physical Review

    STRUCTURES, PROPERTIES AND FUNCTIONALITIES OF MAGNETIC DOMAIN WALLS IN THIN FILMS, NANOWIRES AND ATOMIC CHAINS: MICROMAGNETIC AND AB INITIO STUDIES

    Get PDF
    Structures, properties and functionalities of magnetic domain walls in thin film, nanowires and atomic chains are studied by micromagnetic simulations and ab initio calculations in this dissertation. For magnetic domain walls in thin films, we computationally investigated the dynamics of one-dimensional domain wall line in ultrathin ferromagnetic film, and the exponent α = 1.24 ± 0.05 is obtained in the creep regime near depinning force, indicating the washboard potential model is supported by our simulations. Furthermore, the roughness, creep, depinning and flow of domain wall line with commonly existed substructures driven by magnetic field are also studied. Our simulation results demonstrate that substructures will decrease the roughness exponent ζ, increase the critical depinning force, and reduce the effective creep energy barrier. Current induced domain-wall substructure motion is also studied, which is found quite different from current induced domain wall motion. For magnetic domain walls in nanowires, field and current induced domain wall motion is studied, and some relevant spintronic devices are proposed based on micromagnetic simulations. Novel nanometer transverse-domain-wall-based logic elements, 360° domain wall generator and shift register are proposed. When spinpolarized current is applied, the critical current for domain wall depinning can be substantially reduced and conveniently tuned by controlling domain wall number in the pile-up at pinning site, in analogy to dislocation pile-up responsible for Hall-Petch effect in mechanical strength. Furthermore, threshold currents for domain wall depinning and transportation through circular geometry in planar nanowire induced by spin transfer torques and spin-orbit torques are theoretically calculated. In addition, magnetic vortex racetrack memory which combines both conceptions of magnetic vortex domain walls and racetrack is also proposed using micromagnetic simulations. For magnetic domain walls in Ni atomic chains, a truly magnetic domain wall structure and the single domain switching process are investigated by both ab initio studies and spin dynamics simulations. Spin moment softening effect caused by the hybridization effect between two spin channels is considered. The atomic domain wall as narrow as 4 atom-distance with slight spin moment softening effect indicates a relatively evident ballistic magnetoresistance effect, and the large EB indicates the strong stability of single domain state

    Study of Long Distance Contributions to KnπννˉK\to n\pi\nu\bar{\nu}

    Full text link
    We calculate long distance contributions to $K\to\pi\nu\bar{\nu}\,,\ \pi\pi\nu\bar{\nu},and, and \pi\pi\pi\nu\bar{\nu}modeswithintheframeworkofchiralperturbationtheory.Wefindthatthesecontributionstodecayratesof modes within the framework of chiral perturbation theory. We find that these contributions to decay rates of K\to \pi\nu\bar{\nu}and and K\to \pi\pi\nu\bar{\nu}$ in the chiral logarithmic approximation are at least seven orders of magnitude suppressed relative to those from the short distance parts. The long distance effects in this class of decays are therefore negligible.Comment: 13 pages, LaTeX fil
    corecore