441 research outputs found
Tribological aspect of lubrication in form tapping of high strength steel
Collaboration avec le LTDSThis study aims at analyzing the tribochemical mechanisms of lubrication during the process of form tapping and consequently optimizing the formulation of the lubricant. In order to correlate the tribochemical reactions with the performance of a lubricant, we measure the alteration of tapping torque according to ASTM D5619 standard. The objective of the study also relates to the identification of the additives and the association of their properties to the performance of lubrication. The goal is to characterize the nature of the tribofilm created at the bottom of the threads which is the zone the most severely affected by the working tool. X-ray Photoelectron Spectroscopy (XPS) is used to characterize the surface of formed threads. This study demonstrates a link between the sulphur reactions on the metallic surface and the friction reducing performance of lubricant during form tapping.Thèse CIFRE TOTA
Directional and singular surface plasmon generation in chiral and achiral nanostructures demonstrated by Leakage Radiation Microscopy
In this paper, we describe the implementation of leakage radiation microscopy
(LRM) to probe the chirality of plasmonic nanostructures. We demonstrate
experimentally spin-driven directional coupling as well as vortex generation of
surface plasmon polaritons (SPPs) by nanostructures built with T-shaped and
- shaped apertures. Using this far-field method, quantitative
inspections, including directivity and extinction ratio measurements, are
achieved via polarization analysis in both image and Fourier planes. To support
our experimental findings, we develop an analytical model based on a
multidipolar representation of - and T-shaped aperture plasmonic
coupler allowing a theoretical explanation of both directionality and singular
SPP formation. Furthermore, the roles of symmetry breaking and phases are
emphasized in this work. This quantitative characterization of spin-orbit
interactions paves the way for developing new directional couplers for
subwavelength routing
Huygens description of resonance phenomena in subwavelength hole arrays
We develop a point-scattering approach to the plane-wave optical transmission
of subwavelength metal hole arrays. We present a real space description instead
of the more conventional reciprocal space description; this naturally produces
interfering resonant features in the transmission spectra and makes explicit
the tensorial properties of the transmission matrix. We give transmission
spectra simulations for both square and hexagonal arrays; these can be
evaluated at arbitrary angles and polarizations.Comment: 5 pages, 3 figure
Scaling strength distributions in quasi-brittle materials from micro- to macro-scales: A computational approach to modeling Nature-inspired structural ceramics
International audienceThis paper presents an approach to predict the strength distribution of quasi-brittle materials across multiple length-scales, with emphasis on Nature-inspired ceramic structures. It permits the computation of the failure probability of any structure under any mechanical load, solely based on considerations of the microstructure and its failure properties by naturally incorporating the statistical and size-dependent aspects of failure. We overcome the intrinsic limitations of single periodic unit-based approaches by computing the successive failures of the material components and associated stress redistributions on arbitrary numbers of periodic units. For large size samples, the microscopic cells are replaced by a homogenized continuum with equivalent stochastic and damaged constitutive behavior. After establishing the predictive capabilities of the method, and illustrating its potential relevance to several engineering problems, we employ it in the study of the shape and scaling of strength distributions across differing length-scales for a particular quasi-brittle system. We find that the strength distributions display a Weibull form for samples of size approaching the periodic unit; however, these distributions become closer to normal with further increase in sample size before finally reverting to a Weibull form for macroscopic sized samples. In terms of scaling, we find that the weakest link scaling applies only to microscopic, and not macroscopic scale, samples. These findings are discussed in relation to failure patterns computed at different size-scales
Validation of Finite Element Image Registration-based Cardiac Strain Estimation from Magnetic Resonance Images
International audienceAccurate assessment of regional and global function of the heart is an important readout for the diagnosis and routine evaluation of cardiac patients. Indeed, recent clinical and experimental studies suggest that compared to global metrics, regional measures of function could allow for more accurate diagnosis and early intervention for many cardiac diseases. Although global strain measures derived from tagged magnetic resonance (MR) imaging have been shown to be reproducible for the majority of image registration techniques, the measurement of regional heterogeneity of strain is less robust. Moreover, radial strain is underestimated with the current techniques even globally. Finite element (FE)-based techniques offer a mechanistic approach for the regularization of the ill-posed registration problem. This paper presents the validation of a recently proposed FE-based image registration method with mechanical regularization named equilibrated warping. For this purpose, synthetic 3D-tagged MR images are generated from a reference biomechanical model of the left ventricle (LV). The performance of the registration algorithm is consequently tested on the images with different signal-to-noise ratios (SNRs), revealing the robustness of the method
- …