4,427 research outputs found

    The rf control and detection system for PACO the parametric converter detector

    Get PDF
    In this technical note the rf control and detection system for a detector of small harmonic displacements based on two coupled microwave cavities (PACO) is presented. The basic idea underlying this detector is the principle of parametric power conversion between two resonant modes of the system, stimulated by the (small) harmonic modulation of one system parameter. In this experiment we change the cavity length applying an harmonic voltage to a piezo-electric crystal. The system can achieve a great sensitivity to small harmonic displacements and can be an interesting candidate for the detection of small, mechanically coupled, interactions (e.g. high frequency gravitational waves).Comment: 13 pages, 4 postscript figure

    Parametric gravity wave detector

    Get PDF
    Since 1978 superconducting coupled cavities have been proposed as a sensitive detector of gravitational waves. The interaction of the gravitational wave with the cavity walls, and the esulting motion, induces the transition of some energy from an initially excited cavity mode to an empty one. The energy transfer is maximum when the frequency of the wave is equal to the frequency difference of the two cavity modes. In 1984 Reece, Reiner and Melissinos built a detector of the type proposed, and used it as a transducer of harmonic mechanical motion, achieving a sensitivity to fractional deformations of the order dx/x ~ 10^(-18). In this paper the working principles of the detector are discussed and the last experimental results summarized. New ideas for the development of a realistic gravitational waves detector are considered; the outline of a possible detector design and its expected sensitivity are also shown.Comment: 9 pages, 6 figures. Talk given at the Workshop on Electromagnetic Probes of Fundamentals Physics, Erice (Italy), October 200

    A detector of gravitational waves based on coupled microwave cavities

    Get PDF
    Since 1978 superconducting coupled cavities have been proposed as sensitive detector of gravitational waves. The interaction of the gravitational wave with the cavity walls, and the resulting motion, induces the transition of some electromagnetic energy from an initially excited cavity mode to an empty one. The energy transfer is maximum when the frequency of the wave is equal to the frequency difference of the two cavity modes. In this paper the basic principles of the detector are discussed. The interaction of a gravitational wave with the cavity walls is studied in the proper reference frame of the detector, and the coupling between two electromagnetic normal modes induced by the wall motion is analyzed in detail. Noise sources are also considered; in particular the noise coming from the brownian motion of the cavity walls is analyzed. Some ideas for the developement of a realistic detector of gravitational waves are discussed; the outline of a possible detector design and its expected sensitivity are also shown.Comment: 29 pages, 12 eps figures. Typeset by REVTe

    A detector of small harmonic displacements based on two coupled microwave cavities

    Get PDF
    The design and test of a detector of small harmonic displacements is presented. The detector is based on the principle of the parametric conversion of power between the resonant modes of two superconducting coupled microwave cavities. The work is based on the original ideas of Bernard, Pegoraro, Picasso and Radicati, who, in 1978, suggested that superconducting coupled cavities could be used as sensitive detectors of gravitational waves, and on the work of Reece, Reiner and Melissinos, who, {in 1984}, built a detector of this kind. They showed that an harmonic modulation of the cavity length l produced an energy transfer between two modes of the cavity, provided that the frequency of the modulation was equal to the frequency difference of the two modes. They achieved a sensitivity to fractional deformations of dl/l~10^{-17} Hz^{-1/2}. We repeated the Reece, Reiner and Melissinos experiment, and with an improved experimental configuration and better cavity quality, increased the sensitivity to dl/l~10^{-20} Hz^{-1/2}. In this paper the basic principles of the device are discussed and the experimental technique is explained in detail. Possible future developments, aiming at gravitational waves detection, are also outlined.Comment: 28 pages, 12 eps figures, ReVteX. \tightenlines command added to reduce number of pages. The following article has been accepted by Review of Scientific Instruments. After it is published, it will be found at http://link.aip.org/link/?rs

    Pipe cooling perspectives for superconducting accelerating cavities

    Get PDF
    We explore the rf characteristics of pipe cooled superconducting cavities versus bath cooled ones, using different pipe configurations and different liquid helium temperatures. Pipe cooled cavities can perform nearly as well as bath cooled ones, provided a suitable pipe configuration and cavity wall thickness is chosen. Pure thermal estimates and fits with experimental data show that pipe cooling is a viable solution for future cavities

    XPS characterization of niobium for RF cavities

    Get PDF
    none4A. DaccĂ ; G. Gemme; L. Mattera; R. ParodiA., DaccĂ ; G., Gemme; Mattera, Lorenzo; R., Parod

    Two Coupled Superconducting Cavities as a Gravitational Wave Detector: First Experimental Results

    Get PDF
    First experimental results of a feasibility study of a gravitational wave detector based on two coupled superconducting cavities are presented. Basic physical principles underlying the detector behaviour and sensitivity limits are discussed. The detector layout is described in detail and its rf properties are showed. The limit sensitivity to small harmonic displacements at the detection frequency (around 1 MHz) is showed. The system performance as a potential g.w. detector is discussed and future developments are foreseen.Comment: 7 pages, 3 figures. Presented at the 9th Workshop on RF Superconductivity, November 1-5, 1999, Santa Fe, New Mexico, US

    Microwave apparatus for gravitational waves observation

    Full text link
    In this report the theoretical and experimental activities for the development of superconducting microwave cavities for the detection of gravitational waves are presented.Comment: 42 pages, 28 figure
    • …
    corecore