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Abstract

First experimental results of a feasibility study of a
gravitational wave detector based on two coupled
superconducting cavities are presented. Basic physical
principles underlying the detector behaviour and
sensitivity limits are discussed. The detector layout is
described in detail and its rf properties are showed. The
limit sensitivity to small harmonic displacements at the
detection frequency (around 1 MHz) is showed. The
system performance as a potential g.w. detector is
discussed and future developments are foreseen.

1  INTRODUCTION
The detection of weak forces acting on macroscopic

bodies often entails the measurement of extremely small
displacements of these bodies or their boundaries. This is
the case in the attempts to detect gravitational waves
(g.w.) or in the search for possible new long range
interactions. In 1978 Bernard, Pegoraro, Picasso and
Radicati suggested that superconducting coupled cavities
could be used as a sensitive detector of gravitational
effects, through the coupling of the gravitational wave
with the electromagnetic field stored inside the cavities
[1]. It has been shown that the principle that underlies
this detector is analogous to the one used in parametric
processes and in particular in frequency converters, i.e.
in a device which converts energy from a reference
frequency to a signal at a different frequency as a
consequence of the time variation of a parameter of the
system. In more detail the rf superconducting coupled
cavities detector consists of an electromagnetic
resonator, with two levels whose frequencies ωs and ωa

are both much larger than the frequency Ω of the g.w.
and satisfy the resonance condition ωa - ωs = Ω.  In the
scheme suggested by Bernard et al. [1] the two levels are
obtained by coupling two identical high frequency
resonators. The frequency ωs is the frequency of the level
symmetrical in the fields of the two resonators, and ωa is
that of the antisymmetrical one. The g.w. trough its
coupling to the electromagnetic energy can induce a
transition between the two levels, provided their angular
momenta along the direction z of propagation of the g.w.
differ by 2. This can be achieved by putting the two
resonators at right angle.

In 1984 Reece, Reiner and Melissinos (RRM), built a
detector of the type proposed in the 10 GHz frequency
range, and used it as a transducer of harmonic
mechanical motion [2]. In order to measure the
sensitivity limit of the detector, one of its walls was
excited by an harmonic perturbation (by a piezoelectric);
with a quality factor of the superconducting cavity equal
to 3 · 108 and a stored electromagnetic energy
approximately equal to 0.1 mJ they showed a sensitivity
to relative deformations  δx/x ≈ 10-17 (Hz)-1/2. Since in the
RRM experiment the interest was to measure small
harmonic displacements and not gravitational effects,
they used two identical cylindrical cavities mounted end-
to-end and coupled via a small circular aperture in their
common endwall. We wish to repeat the RRM
experiment and improve its sensitivity by a factor 103,
thus reaching a sensitivity to harmonic displacements of
the order 10-20 (Hz)-1/2. If these goal would be obtained
this detector could be an interesting candidate for the
detection of gravitational waves or in the search of long
range interactions of weak intensity.

2  BASIC PHYSICAL PRINCIPLES
A parametric converter is a nonlinear device which
transfers energy from a reference frequency to a signal
with different frequency, utilizing a nonlinear parameter
(a reactance) of the system, or a parameter that can be
varied as a function of time by applying a suitable signal.
The time varying parameter may be electrical or
mechanical; in the latter case the device acts as a
transducer of mechanical displacements.

The basic equations describing the parametric
converter are the Manley-Rowe relations [3]. They are a
set of power conservation relations that are extremely
useful in evaluating the performance of a parametric
device. We will not derive here the complete Manley-
Rowe relations, but we will just describe the
fundamental ideas upon which the parametric converter
behavior is based.

Let us consider a physical system which can exist in
two distinct energy levels. To fix our ideas let us take as
an example a system of two identical coupled resonant
cavities like those of the RRM experiment. If the
resonant frequency of the unperturbed single cell is ω0,
then the frequency spectrum of the coupled system
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consists of two levels at frequencies ωs and ωa, where
ωs=ω0-δω and ωa=ω0+δω, where 2δω/ω0=K , is the
coupling coefficient of the system.

We can store some electromagnetic energy in the
system at frequency ωs; if some external harmonic
perturbation at frequency Ω = ωa-ωs induces the time
variation of one system parameter we can have some
energy transfer between the two energy levels, i.e. from
ωs  to ωa. The external perturbation can equally well be
an harmonic modulation of the cavity end wall, which
causes the variation of the system reactance, or, in the
case of the passage of a gravitational wave, the induced
time modulation of the permittivity of the vacuum.

Let us call P  the total power absorbed by the device.
We can write

aassas NNPPP ω+ω=+= =�=� (1)

where iN�  is the time variation of the number of photons

in level i. If we assume that the total number of photons
in the systems N = Ns + Na  is conserved we have

NNN sa
��� =−= (2)

The total power absorbed by the system is therefore

)( saNP ω−ω= =� (3)

and the power transferred to the upper level is given by
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The amplification factor ωa/Ω is characteristic of
parametric frequency converters.

To get deeper insight into eq. (4) we have to know the
exact expression of P; in fact the power exchanged
between the external perturbation and the system is
proportional to the square of the fractional change of the
time varying system parameter. If we denote this
quantity with h, we can write for our coupled resonators
system:

2
1Ω= QhUP (5)

From eq. (4) and eq. (5) we can easily derive the
expression for the power transferred to the initially
empty level

2ω= QhUP saa (6)

In the last equation Us is the energy stored in level s, Q
is the electromagnetic quality factor of the resonant
cavities.

The quantity h above may represent the fractional
change of the system reactance, or of the system length
being harmonically modulated (δx/x), or the
dimensionless amplitude of the g.w.

Since Pa is proportional to the electromagnetic quality
factor, superconducting resonant cavities should be
employed to achieve maximum sensitivity.

3  SENSITIVITY LIMITS
Equation (6) could be a good starting point for a detailed
discussion of the sensitivity limits of the detector. To
make quantitative statements we need to know in some
more detail our detector geometry. We choose a
configuration very similar to the RRM experiment with
two cylindrical niobium cavities coupled through a small
circular aperture on the axis. The operating mode is the
TE011 at 3 GHz which, due to the coupling, splits into a
symmetrical and an antisymmetrical mode respectively
at frequency ωs and ωa. The system is designed so that
mode separation is about 1 MHz (see next section for
more details on system design). For our geometry the
relation between the maximum energy that can be stored
in a superconducting niobium cavity and the frequency
of the electromagnetic field is (in the following were not
differently specified we take ωs ≈ ωa = ω)
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Deriving h from eq. (6) and using the above result we
get:
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where Pa 

min is the noise power spectral density in our
system. From eq. (9) is apparent that to get better
sensitivity lower frequencies and higher quality factors
are preferred.

For example at 3 GHz with Q = 1010 and setting a noise
power spectral density Pa 

min

 =10-22 Watt/Hz we get hmin ≈ 2
· 10-22 (Hz)-1/2; while at 300 MHz, with Q = 1011 and the
same noise power spectral density one should get hmin ≈ 6
· 10-24 (Hz)-1/2.

To give a more realistic estimate of Pa 

min

  we have to
discuss the various noise contributions present in our
apparatus.

3.1 Symmetrical mode leakage

To operate our device we have to feed microwave power
into one resonant mode and then to perturb one system
parameter at a frequency equal to the mode separation,
in order to detect the energy transfer between the full
and the empty mode. Here we suppose that the initially
full mode is the symmetrical one, and that this same



mode is the lower frequency one. This is very likely to
be the case, but is not at all crucial for the following
discussion.

To feed power into our device we shall use a voltage
controlled microwave oscillator locked onto the cavity
symmetrical mode, at frequency ωs. If we assume a
lorentzian power distribution and a constant power of the
lower (symmetrical) level we get:

Hz

Watt
osc 2

2

0







ω

ω
−

ω
ω+1

ω
4

≈
s

s

s

Q

QP

P (10)

Here and in the following equations the suffix s labels
quantities related to the symmetric mode, while the
suffix a stands for the antisymmetric mode. From the
above equation we can estimate the local oscillator noise
power spectral density at the antysimmetric frequency,
i.e. the leakage of mode s at the frequency of mode a:
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where we used the approximate relation P0Q ≈ ωsUs and
put Ω = ωa-ωs.

R is a number which depends upon the details of the
measurement; if the receiver does not discriminate the
parity of the field at frequency ωa, R is of order one.
Discrimination of the parity, as in the RRM experiment,
would considerably reduce this value. RRM made use of
a magic tee to excite the symmetric mode trough the Σ
port, and to detect the antisymmetric mode trough the ∆
port (see fig. 1a). With careful adjustments they obtained
70 dB isolation between the Σ and ∆ ports of the magic
tee (R ≈ 10-7).

Additional noise suppression should be achieved by
improving the mode discrimination and detecting Pa in
pure transmission (see fig. 1b). With the use of two
additional cavity couplings and another magic tee, the
input and output signals could be optimally separated.
The input couplings would be balanced so as to null the
excitation of the second cavity mode produced by phase
noise in the input. The output couplings would likewise
be balanced to null the transmission of the symmetrical
mode. By this arrangement the 70 dB isolation given by
a balanced magic tee is used twice. In fact numerical
simulations performed on this system configuration gave
R ≈ 10-13 for the transmission detection scheme. With this
calculated value of R, setting Us = Umax and Q = 1010 we
get, at 3 GHz, Pa

osc ≈ 10-19 Watt/Hz for Ω = 1 KHz. At Ω
= 1 MHz, the contribution of the symmetrical mode
width is negligible compared to the thermal noise

spectral density: Pthermal ≈ kT = 2.5 · 10-23 Watt/Hz at T
=1.8 K.

Figure 1: Schematic view of the experimental detection
scheme in reflection and in transmission.

3.2 TWT Input Noise

The rf signal at ωs feeding the cavity is generated by a
VCO and amplified by a TWT amplifier before entering
the first magic tee. The TWT amplifier is a Logimetrics
A340/S with A = 42 dB nominal gain at 3 GHz and a
noise figure Nf = 18.7 dB.  The noise power spectral
density input in the system is given by

Pa

amp ≈ kT·10Nf/10·10A/10  = kTeq ≈ 5·10-15 Watt/Hz (12)

at 300 K. This value is, for the time being, the most
severe limitation to system sensitivity, as we shall
discuss in section 3.4. This huge noise power should be
attenuated by the mode discrimination system described
in the previous section. In fact the antisymmetric mode
component excited by the TWT noise at frequency ωa

should be rejected by a factor of order R by the input
magic tee. First measurements performed on the system
showed that, while the symmetric mode amplitude is
attenuated by a factor of 10-8 by the discrimination
system, this noise spectrum is virtually unaffected, being
lowered, at most, by a factor of 10. This shows that the
transmission detection scheme, while very promising,
requires very careful adjustments of both the input and
output couplings to be effective.

3.2  Low Noise Amplifier Input Noise

The input Johnson noise of the first amplifier in the
detection electronics has to be evaluted and added to the
former to establish the overall system intrinsic noise
level.

The rf amplifier we are using is a JCA23-4029,
manufactured by JCA Technology, Inc. which provides
48 dB gain at 3 GHz with a noise figure Nf = 0.6 dB.

This leads to a thermal noise power spectral density at
room temperature equal to

Pa

amp ≈ kT·10Nf/10  = kTeq ≈ 5·10-21 Watt/Hz (13)



We point out that this value is obtained at T = 300 K
which corresponds to Teq ≈ 340 K. In principle using a
cryogenic preamplifier one should gain more than an
order of magnitude and get Pa

amp ≈ 2.8 · 10-22 Watt/Hz
with an equivalent temperature Teq = 20 K.

3.3  Brownian motion noise

Since we plan to operate our device as a mechanical
motion transducer we must consider mechanical noise
sources as well as electronic noise sources. In fact using
eq. (6) we can write the brownian noise spectral density
as

( )2ω≈ Br
sa

Br
a hQUP (14)

To derive an explicit expression of hBr we have to
develop a mechanical model of our system. Since it is
quite difficult to treat the problem in the general case,
and since we are interested in an order of magnitude
estimate of the relevant quantities, we shall focus our
attention on the longitudinal vibrational behaviour (i.e.
on the mechanical displacements that change the cavity
length) in two limiting cases:

•  a low frequency limit 




 π
≈ω

L
sc

m , where the one-

dimensional vibrational spectrum can be described
by a discrete set of isolated resonances;

•  an high frequency limit 
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m , where the

system can be considered an elastic continuum.

3.3.1  Low frequency limit

The mean square displacement spectral density near a
mechanical resonance is given by [4]
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This amplitude is, from the parametric conversion
process point of view, equivalent to the external
perturbing signal. In other words we can associate to
brownian motion a fractional change of the characteristic
system length L
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Obviously the relevant contribution of brownian
motion noise is for ω ≈ Ω. We can slightly simplify the

former expression in two limiting cases. When Ω ≈ ωm

we have
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while if Ω >> ωm we have
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From eqs. (14), (17) and (18) we can write for the
brownian noise power spectral density
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for Ω >> ωm.
To give a numerical estimate of this quantity the

mechanical properties of the resonator should be known.
If we set T = 1.8 K, m = 10 Kg, L = 1 m, Qm = 100, Q =
1010 and U = Umax, we get near a resonance for Ω ≈ ωm = 1
KHz, Pa

Br ≈ 10-11 Watt/Hz. From the above considerations
is easily seen that to get an high sensitivity, in this
experimantal configuration, we should avoid to work at
frequencies near to the detector mechanical resonances.

3.3.2  High frequency limit

Let us start our analysis by asking which is the mean
vibrational energy per unit bandwidth in our system. We
know that the mean energy per resonant mode is kT=ε ,
where we can safely neglet quanto-mechanical
corrections for all frequencies of interest )( kT<<Ω= .

To find out the mean energy per unit bandwidth we have
to multiply the mean energy per mode by the number of
modes per unit bandwidth at frequency Ω: σ(Ω). It is
well known that for a one-dimensional system this
number does not depend on frequency and is equal to

sc

L

π
=Ωσ )( , where cs is the sound velocity in the solid

considered. We have for the mean vibrational energy per
unit bandwidth:
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If we compare the above expression with the energy of
a one-dimensional harmonic oscillator at frequency

Ω  we can write ΩΩ= 22 dxmdE , where 2x  is

the mean square displacement spectral density and we

can easily derive an expression for 2x :
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At this point is straightforward to find the expression
that gives hBr as a function of system parameters:
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Using eq. (23) and setting T = 1.8 K, m = 10 Kg, L = 1
m, cs = 4.75 · 103 m/sec, Q = 1010 and U = Umax, we get
for Ω = 1 MHz, Pa

Br ≈ 10-20 Watt/Hz.

3.4  System sensitivity

All of the noise sources are incoherent. The total noise
power spectral density is the sum of all the noise

sources: Br
a

amp
a

TWT
a

osc
aa PPPPP +++=min .

Using the expressions found above we find the
behaviour shown in fig. 2 of system sensitivity as a
function of detection frequency. The values plotted in
fig. 2 have been calculated for a signal to noise ratio of
1.7, corresponding to 90% confidence level for gaussian
probability distribution. Due to the strong dependence of
detector sensitivity to the mechanical properties of the
device a detailed study of those properties is needed.

Figure 2: System sensitivity vs. detection frequency. Plotted values are for a signal to noise ratio of 1.7 (90%
confidence level)

4  MECHANICAL AND
ELECTROMAGNETIC DESIGN OF THE

DETECTOR
The detector is built using two coupled RF cavities. The
geometry of the resonators gives us the electromagnetic
field needed for the detection of the wanted physical
quantities.

Because the ultimate sensitivity of the detector at a
given frequency is related to the Q and the stored energy
of the resonator, a resonator geometry with high
geometric magnetic factor Γ is preferred, where
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To avoid rf electronic vacuum discharges and Fowler-
Nordheim like non resonant electron loading, rf modes
with vanishing electric field at the surface are
mandatory.

The aforementioned requirements on the field
configuration in the coupled resonator force us to follow
the same path of Reece, Reiner and Melissinos choosing
a TE mode for the cavities.

Early analysis of  the best resonator shape suggested to
use two spherical cavities coupled trough an iris [5];
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nonetheless the higher cost of this choice and the
dimension of the spherical resonator suggested us to use
as a first step a conservative and lower cost approach
using two cylindrical cavities coupled trough an axial
iris.

The choice of the frequency, at this stage, was
imposed by the maximum dimension for the resonator
that can be housed in our standard test cryostat in a
comfortable way; in our case the inner diameter is 300
mm giving us enough room for a 3 GHz resonator.

The naive choice to start our design is a couple of
cylindrical resonators having the height h equal to the
diameter d.

For this configuration we can compute all the relevant
quantities, as geometric factor and frequencies, starting
from analytical expressions for the fields, or using the
Bethe [6] perturbation theory for the evaluation of the
coupling coefficient and mode separation.

Using a pill box like TE
011 geometry nevertheless

should be a little bit upsetting due to the degeneracy of
the TE

01 and TM
11
 modes; sure this problem is quite mild

in our case: due to the very high Q value of the
superconducting cavities, any distortion of the cavity
geometry will split the TE and TM modes avoiding
unwanted interactions.

Nevertheless we would like to enhance the splitting to
be sure to remove any possible interaction between the
TE and TM resonance.

To do that we design the cavity with a little modified
geometry substituting the straight end plates with a
spherical segment; the effect of this modification is to
move away by 50 MHz the TM

11 modes.
To compute the resonant frequency and the rf

quantities relevant for our experiment we used our
Oscar2D code [7].

The coupling iris is a circular hole on the cavity axis.
The effect of the coupling gives a symmetric field
distribution at the lower frequency and the anti
symmetric at the higher frequency, i.e. the coupling is
electrical.

On the basis of the results of the simulations the final
design of the cavity was decided: the construction
drawing of the PACO resonator is shown on figure 3.

Unfortunately, during the electron beam welding of the
bottom plates on the cylindrical barrel, two holes were
produced on the niobium sheet. This caused a severe
degradation of the cavity surface and, as a consequence,
of the quality factor. The detector, before being tested,
was chemically polished at CERN with standard niobium
recipes.

Figure 3: View of the final design of the detector.

5  EXPERIMENTAL RESULTS
The electromagnetic properties were measured in a
vertical cryostat after careful tuning of the two cells
frequencies.
The symmetric mode frequency was measured at
3.03431 GHz and the mode separation was 1.3817 MHz.

The unloaded Q at 4.2 K was 5 · 107, and no significant
improvement was found lowering the helium bath
temperature at 1.8 K. Even after a second chemical
polishing, performed at CERN, which removed
approximately 300 µm of niobium from the surface, no
improvement was observed. We believe that this very
low Q value is due to hot spots on the surface caused by
the aforementioned welding problems. A second
resonator, with slightly modified geometry, is under
construction, and will be ready at the end of 1999.

Adjusting the phase and amplitude of the rf signal
entering and leaving the cavity, the arms of the two
magic tees were balanced to launch the symmetrical
mode at the cavity input and to pick up the
antisymmetrical one at the cavity output. With 30 dBm
of power at the Σ port of the first magic tee, -50 dbm
were detected at the ∆ port of the second one, giving an
overall attenuation of the symmetric mode of 80 dB.

The energy stored in the cavity with 30 dBm input
power was approximately 1 mJ.

The signal emerging from the ∆ port of the output
magic tee was amplified by the LNA and fed into a
spectrum analyzer. The signal level at the antisymmetric
mode frequency was –120 dBm in a 1 Hz bandwidth; the
main contribution to this signal was the input noise of
the TWT amplifier used to feed the cavity. Since the
TWT noise passes trough the system with practically no
attenuation and the rejection of the symmetric mode is
relatively poor (four orders of magnitude worse than the
expected value) the adjustments at the input and output
port have to be improved.

System sensitivity at this stage is given by

16−10⋅6≈
ω

=
UQ

P
h (Hz)-1/2 (25)

This value is quite far from our goal of h •10-20 (Hz)-1/2.
Since, to our knowledge, this is the first example of a



parametric detector operated in trasmission, and since
this configuration requires very careful adjustments of
the input and output ports balancing, we believe that
significant improvements are obtainable. Furthermore
the new cavity under construction should show the high
quality factor needed to reach high sensitivity.

6  FUTURE PLANS AND CONCLUSIONS
We shall concentrate our attention to the following

main items:
•  System stability over time ranges of the order of

magnitude of the inverse of our detection
bandwidth. Obviously if we are going to detect our
signal in a narrow bandwidth, we have to check
carefully that system parameters do not change
significantly over a time scale as long as possible. In
particular the most critical parameter is the
frequency splitting between the two normal modes
Ω. Experimental tests will show if an active control
is needed to lock Ω at a fixed value.

•  System sensitivity, by measuring noise level without
any perturbing external signal. A careful analysis
and comparison between theoretical predictions and
experimental results on noise level will be done.

•  Verification of parametric conversion, measuring
the converted signal at different external
perturbation amplitudes. This point includes
optimum system tuning to get best signal to noise
ratio.

•  Mechanical modes distribution and properties
measurement.

At the end of the experimental tests on the cylindrical
detector, we shall build and test the spherical cavities
detector configuration, which should give best
performances in view of gravitational waves detection,
due to the more favourable electromagnetic geometric
factor. Moreover, using niobium sputtered copper
cavities, we should take advantage of the very high
quality factors obtained so far with this technique.

If the goal sensitivity would be obtained, the proposed
detector could be an interesting candidate in the search
of gravitational waves or long range interactions of weak
intensity. In fact it is conceivable to push down the rf
operating frequency in the 300 MHz range and the mode
splitting in the 10 kHz range, thus making a series of
similar detectors, working at different frequencies and/or
mode separations, covering the 104 – 106 Hz range. This
frequency range is beyond the resonant bar and large
bandwidth interferometers operating frequency so that
the proposed detector could be useful to cover the high
frequency region of the spectrum.

Recent works [8] focused their attention on the dection
of stochastic g.w. sources and in particular of the relic
g.w. background and pointed out that a relic background
detected at high frequency would be unambiguously of
cosmological origin. The detection of stochastic g.w.

sources could be done by correlating two (or more)
detectors put at a distance small compared to the g.w.
wavelength (so that the signals could be correlated) but
large enough to be sufficient to decorrelate local noises.
With this experimental arrangement sistem sensitivity
could be increased by several orders of magnitude [9]
making possible the detection of very low signal levels.
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