30 research outputs found
Nature of Ar bonding to small Co_n^+ clusters and its effect on the structure determination by far-infrared absorption spectroscopy
Far-infrared vibrational spectroscopy by multiple photon dissociation has
proven to be a very useful technique for the structural fingerprinting of small
metal clusters. Contrary to previous studies on cationic V, Nb and Ta clusters,
measured vibrational spectra of small cationic cobalt clusters show a strong
dependence on the number of adsorbed Ar probe atoms, which increases with
decreasing cluster size. Focusing on the series Co_4^+ to Co_8^+ we therefore
use density-functional theory to analyze the nature of the Ar-Co_n^+ bond and
its role for the vibrational spectra. In a first step, energetically low-lying
isomer structures are identified through first-principles basin-hopping
sampling runs and their vibrational spectra computed for a varying number of
adsorbed Ar atoms. A comparison of these fingerprints with the experimental
data enables in some cases a unique assignment of the cluster structure.
Independent of the specific low-lying isomer, we obtain a pronounced increase
of the Ar binding energy for the smallest cluster sizes, which correlates
nicely with the observed increased influence of the Ar probe atoms on the IR
spectra. Further analysis of the electronic structure motivates a simple
electrostatic picture that not only explains this binding energy trend, but
also why the influence of the rare-gas atom is much stronger than in the
previously studied systems.Comment: 12 pages including 10 figures; related publications can be found at
http://www.fhi-berlin.mpg.de/th/th.htm
Substrate-free miniaturized thin-film filters for single-element coarse wavelength division multiplexing fibers
We have created high-precision, miniaturized, substrate-free filters, based on ion beam sputtering on a sacrificial substrate. The sacrificial layer is cost efficient and environmentally friendly and can be dissolved using only water. We demonstrate an improved performance compared to filters on thin polymer layers from the same coating run. With these filters, a single-element coarse wavelength division multiplexing transmitting device for telecommunication applications can be realized by inserting the filter between fiber ends
Perioperative changes in osteopontin and TGFβ1 plasma levels and their prognostic impact for radiotherapy in head and neck cancer
Background:
In head and neck cancer little is known about the kinetics of osteopontin (OPN) expression after tumor resection. In this study we evaluated the time course of OPN plasma levels before and after surgery.
Methods:
Between 2011 and 2013 41 consecutive head and neck cancer patients were enrolled in a prospective study (group A). At different time points plasma samples were collected: T0) before, T1) 1 day, T2) 1 week and T3) 4 weeks after surgery. Osteopontin and TGFβ1 plasma concentrations were measured with a commercial ELISA system. Data were compared to 131 head and neck cancer patients treated with primary (n = 42) or postoperative radiotherapy (n = 89; group B1 and B2).
Results:
A significant OPN increase was seen as early as 1 day after surgery (T0 to T1, p < 0.01). OPN levels decreased to base line 3-4 weeks after surgery. OPN values were correlated with postoperative TGFβ1 expression suggesting a relation to wound healing. Survival analysis showed a significant benefit for patients with lower OPN levels both in the primary and postoperative radiotherapy group (B1: 33 vs 11.5 months, p = 0.017, B2: median not reached vs 33.4, p = 0.031). TGFβ1 was also of prognostic significance in group B1 (33.0 vs 10.7 months, p = 0.003).
Conclusions:
Patients with head and neck cancer showed an increase in osteopontin plasma levels directly after surgery. Four weeks later OPN concentration decreased to pre-surgery levels. This long lasting increase was presumably associated to wound healing. Both pretherapeutic osteopontin and TGFβ1 had prognostic impact
EDGAR: An Autonomous Driving Research Platform -- From Feature Development to Real-World Application
While current research and development of autonomous driving primarily
focuses on developing new features and algorithms, the transfer from isolated
software components into an entire software stack has been covered sparsely.
Besides that, due to the complexity of autonomous software stacks and public
road traffic, the optimal validation of entire stacks is an open research
problem. Our paper targets these two aspects. We present our autonomous
research vehicle EDGAR and its digital twin, a detailed virtual duplication of
the vehicle. While the vehicle's setup is closely related to the state of the
art, its virtual duplication is a valuable contribution as it is crucial for a
consistent validation process from simulation to real-world tests. In addition,
different development teams can work with the same model, making integration
and testing of the software stacks much easier, significantly accelerating the
development process. The real and virtual vehicles are embedded in a
comprehensive development environment, which is also introduced. All parameters
of the digital twin are provided open-source at
https://github.com/TUMFTM/edgar_digital_twin
Influence of clustering on the magnetic properties and hyperthermia performance of iron oxide nanoparticles
Clustering of magnetic nanoparticles can drastically change their collective magnetic properties, which in turn may influence their performance in technological or biomedical applications. Here, we investigate a commercial colloidal dispersion (FeraSpinâ„¢R), which contains dense clusters of iron oxide cores (mean size around 9 nm according to neutron diffraction) with varying cluster size (about 18-56 nm according to small angle x-ray diffraction), and its individual size fractions (FeraSpinâ„¢XS, S, M, L, XL, XXL). The magnetic properties of the colloids were characterized by isothermal magnetization, as well as frequency-dependent optomagnetic and AC susceptibility measurements. From these measurements we derive the underlying moment and relaxation frequency distributions, respectively. Analysis of the distributions shows that the clustering of the initially superparamagnetic cores leads to remanent magnetic moments within the large clusters. At frequencies below 105rad s-1, the relaxation of the clusters is dominated by Brownian (rotation) relaxation. At higher frequencies, where Brownian relaxation is inhibited due to viscous friction, the clusters still show an appreciable magnetic relaxation due to internal moment relaxation within the clusters. As a result of the internal moment relaxation, the colloids with the large clusters (FS-L, XL, XXL) excel in magnetic hyperthermia experiments
DASC-PM v1.0 : ein Vorgehensmodell für Data-Science-Projekte
Das Thema Data Science hat in den letzten Jahren in vielen Organisationen stark an Aufmerksamkeit gewonnen. Häufig herrscht jedoch weiterhin große Unklarheit darüber, wie diese Disziplin von anderen abzugrenzen ist, welche Besonderheiten der Ablauf eines Data-Science-Projekts besitzt und welche Kompetenzen vorhanden sein müssen, um ein solches Projekt durchzuführen. In der Hoffnung, einen kleinen Beitrag zur Beseitigung dieser Unklarheiten leisten zu können, haben wir von April 2019 bis Februar 2020 in einer offenen und virtuellen Arbeitsgruppe mit Vertretern aus Theorie und Praxis das vorliegende Dokument erarbeitet, in dem ein Vorgehensmodell für Data-Science-Projekte beschrieben wird – das Data Science Process Model (DASC-PM). Ziel war es dabei nicht, neue Herangehensweisen zu entwickeln, sondern viel-mehr, vorhandenes Wissen zusammenzutragen und in geeigneter Form zu strukturieren. Die Ausarbeitung ist als Zusammenführung der Erfahrung sämtlicher Teilnehmerinnen und Teilnehmer dieser Arbeitsgruppe zu verstehen
Iota-Carrageenan Is a Potent Inhibitor of Influenza A Virus Infection
The 2009 flu pandemic and the appearance of oseltamivir-resistant H1N1 influenza strains highlight the need for treatment alternatives. One such option is the creation of a protective physical barrier in the nasal cavity. In vitro tests demonstrated that iota-carrageenan is a potent inhibitor of influenza A virus infection, most importantly also of pandemic H1N1/2009 in vitro. Consequently, we tested a commercially available nasal spray containing iota-carrageenan in an influenza A mouse infection model. Treatment of mice infected with a lethal dose of influenza A PR8/34 H1N1 virus with iota-carrageenan starting up to 48 hours post infection resulted in a strong protection of mice similar to mice treated with oseltamivir. Since alternative treatment options for influenza are rare, we conclude that the nasal spray containing iota-carrageenan is an alternative to neuraminidase inhibitors and should be tested for prevention and treatment of influenza A in clinical trials in humans