255 research outputs found

    Scaling Studies Of Spheromak Formation And Equilibrium

    Get PDF
    Formation and equilibrium studies have been performed on the Swarthmore Spheromak Experiment (SSX). Spheromaks are formed with a magnetized coaxial plasma gun and equilibrium is established in both small (d(small)=0.16 m) and large (d(large)=3d(small)=0.50 m) copper flux conservers. Using magnetic probe arrays it has been verified that spheromak formation is governed solely by gun physics (in particular the ratio of gun current to flux, mu(0)I(gun)/Phi(gun)) and is independent of the flux conserver dimensions. It has also been verified that equilibrium is well described by the force free condition del xB=lambda B (lambda=constant), particularly early in decay. Departures from the force-free state are due to current profile effects described by a quadratic function lambda=lambda(psi). Force-free SSX spheromaks will be merged to study magnetic reconnection in simple magnetofluid structures. (C) 1998 American Institute of Physics

    Accelerator Optimization Using a Network Control and Acquisition System

    Get PDF

    Low transverse emittance electron bunches from two-color laser-ionization injection

    Full text link
    A method is proposed to generate low emittance electron bunches from two color laser pulses in a laser-plasma accelerator. A two-region gas structure is used, containing a short region of a high-Z gas (e.g., krypton) for ionization injection, followed by a longer region of a low-Z gas for post-acceleration. A long-laser-wavelength (e.g., 5 micron) pump pulse excites plasma wake without triggering the inner-shell electron ionization of the high-Z gas due to low electric fields. A short-laser-wavelength (e.g., 0.4 micron) injection pulse, located at a trapping phase of the wake, ionizes the inner-shell electrons of the high-Z gas, resulting in ionization-induced trapping. Compared with a single-pulse ionization injection, this scheme offers an order of magnitude smaller residual transverse momentum of the electron bunch, which is a result of the smaller vector potential amplitude of the injection pulse

    Climate of the Field: Snowmass 2021

    Full text link
    How are formal policies put in place to create an inclusive, equitable, safe environment? How do these differ between different communities of practice (institutions, labs, collaborations, working groups)? What policies towards a more equitable community are working? For those that aren't working, what external support is needed in order to make them more effective? We present a discussion of the current climate of the field in high energy particle physics and astrophysics (HEPA), as well as current efforts toward making the community a more diverse, inclusive, and equitable environment. We also present issues facing both institutions and HEPA collaborations, with a set of interviews with a selection of HEPA collaboration DEI leaders. We encourage the HEPA community and the institutions & agencies that support it to think critically about the prioritization of people in HEPA over the coming decade, and what resources and policies need to be in place in order to protect and elevate minoritized populations within the HEPA community.Comment: Contribution to Snowmass 202

    A Systematic Review of Durum Wheat: Enhancing Production Systems by Exploring Genotype, Environment, and Management (G × E × M) Synergies

    Get PDF
    According to the UN-FAO, agricultural production must increase by 50% by 2050 to meet global demand for food. This goal can be accomplished, in part, by the development of improved cultivars coupled with modern best management practices. Overall, wheat production on farms will have to increase significantly to meet future demand, and in the face of a changing climate that poses risk to even current rates of production. Durum wheat [Triticum turgidum L. ssp. durum (Desf.)] is used largely for pasta, couscous and bulgur production. Durum producers face a range of factors spanning abiotic (frost damage, drought, and sprouting) and biotic (weed, disease, and insect pests) stresses that impact yields and quality specifications desired by export market end-users. Serious biotic threats include Fusarium head blight (FHB) and weed pest pressures, which have increased as a result of herbicide resistance. While genetic progress for yield and quality is on pace with common wheat (Triticum aestivum L.), development of resistant durum cultivars to FHB is still lagging. Thus, successful biotic and abiotic threat mitigation are ideal case studies in Genotype (G) × Environment (E) × Management (M) interactions where superior cultivars (G) are grown in at-risk regions (E) and require unique approaches to management (M) for sustainable durum production. Transformational approaches to research are needed in order for agronomists, breeders and durum producers to overcome production constraints. Designing robust agronomic systems for durum demands scientific creativity and foresight based on a deep understanding of constitutive components and their innumerable interactions with each other and the environment. This encompasses development of durum production systems that suit specific agro- ecozones and close the yield gap between genetic potential and on-farm achieved yield. Advances in individual technologies (e.g., genetic improvements, new pesticides, seeding technologies) are of little benefit until they are melded into resilient G × E × M systems that will flourish in the field under unpredictable conditions of prairie farmlands. We explore how recent genetic progress and selected management innovations can lead to a resilient and transformative durum production system

    A Laser-Plasma Ion Beam Booster Based on Hollow-Channel Magnetic Vortex Acceleration

    Full text link
    Laser-driven ion acceleration can provide ultra-short, high-charge, low-emittance beams. Although undergoing extensive research, demonstrated maximum energies for laser-ion sources are non-relativistic, complicating injection into high-β\beta accelerator elements and stopping short of desirable energies for pivotal applications, such as proton tumor therapy. In this work, we decouple the efforts towards relativistic beam energies from a single laser-plasma source via a proof-of-principle concept, boosting the beam into this regime through only a few plasma stages. We employ full 3D particle-in-cell simulations to demonstrate the capability for capture of high-charge beams as produced by laser-driven sources, where both source and booster stages utilize readily available laser pulse parameters.Comment: 4 pages, 4 figures, submitted for peer revie
    • …
    corecore