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Scaling studies of spheromak formation and equilibrium
C. G. R. Geddes, T. W. Kornack, and M. R. Browna)

Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081-1397

~Received 2 October 1997; accepted 23 December 1997!

Formation and equilibrium studies have been performed on the Swarthmore Spheromak Experiment
~SSX!. Spheromaks are formed with a magnetized coaxial plasma gun and equilibrium is
established in both small (dsmall50.16 m! and large (dlarge53dsmall50.50 m! copper flux
conservers. Using magnetic probe arrays it has been verified that spheromak formation is governed
solely by gun physics~in particular the ratio of gun current to flux,m0I gun /Fgun) and is
independent of the flux conserver dimensions. It has also been verified that equilibrium is well
described by the force free condition¹3B5lB (l5constant!, particularly early in decay.
Departures from the force-free state are due to current profile effects described by a quadratic
function l5l(c). Force-free SSX spheromaks will be merged to study magnetic reconnection in
simple magnetofluid structures. ©1998 American Institute of Physics.@S1070-664X~98!00204-3#

I. INTRODUCTION

A spheromak is a toroid of plasma with toroidal and
poloidal magnetic fields of comparable strength generated by
currents flowing in the plasma, and with no material linking
the center of the torus~Figure 1!. The unique properties of
spheromaks have recently fueled interest in their use for
studies of magnetic reconnection1–5 and magnetic confine-
ment fusion.6,7 There has been a recent renaissance in
spheromak research beginning with the assertion by Fowler
and Hooper8–10 that spheromaks generated by the Los Ala-
mos Compact Torus Experiment~CTX! group6 may have
had good core confinement during decay. Fowler’s argument
is that most of the Ohmic power from a magnetized plasma
gun went to the cool, resistive edge plasma and furthermore
that magnetic decay is regulated by flux at the edge. These
two points conspire to make a poor global confinement time
tE dominated by edge physics. The highest performance
CTX spheromaks were gun-produced and formed in close-
fitting 0.56 m diameter copper flux conservers. Typical best
parameters wereTe5400 eV,ne5531020 m23 and Bwall

53T11,12 and produced significant x-rays from runaway
electrons.13 Hooper suggested that the x-rays were evidence
of closed flux surfaces in the core and that poor global con-
finement was due to open flux at the edge.

The goal of the Swarthmore Spheromak Experiment
~SSX! is to study the basic physics of the spheromak and to
use stable spheromaks as force-free reservoirs of magnetic
flux for merging and reconnection experiments~see Figure
2!. We have performed experiments at SSX in both small
(dsmall50.16 m) and large (dlarge50.50 m) flux conserv-
ers using coaxial plasma guns in a high vacuum, low impu-
rity environment. The planned Sustained Spheromak Physics
Experiment~SSPX! at Lawrence Livermore National Labo-
ratory will study the assertions of Fowler and Hooper further
in a sustained, steady state discharge. The SSPX spheromak
will be formed in a 1.0 m diameter copper flux conserver

using coaxial magnetized plasma guns in a high vacuum, low
impurity environment. It is our hope that scaling studies on
SSX can be applied to SSPX design and operation.

This paper describes spheromak formation and equilib-
rium experiments on SSX. In section II A a simple theory of
spheromak formation is presented, in section II B spheromak
equilibrium theory and numerical modelling results are pre-
sented. Section III describes the SSX spheromak experiment.
In section III A formation results from both flux conservers
are presented and in section III B equilibrium results from
both flux conservers are presented. Section IV is a conclu-
sion and overview of the results. Details of probe calibration
and design are presented in an appendix.

II. THEORY

A. Formation

Spheromaks are formed in SSX by a magnetized coaxial
plasma gun.14,15Magnetic flux~called the ‘‘stuffing flux’’! is
deposited in the inner electrode of the gun using an external
coil. High purity hydrogen is puffed into the annular gap
between the inner and outer electrode. A high voltage~up to
10 kV! is applied which ionizes the gas and creates a radial
current sheet. The discharge current~over 100 kA! generates
toroidal flux and the axialJ3B force ejects plasma out of
the gun. If theJ3B force exceeds the magnetic tension of
the stuffing flux then a free spheromak is formed. The pro-
cess is analogous to the blowing of a soap bubble. The soap
film tension is analogous to the stuffing flux tension, while
the pressure of one’s breath in forming the soap bubble is
akin to the magnetic pressure of the gun current.

Spheromak formation by magnetized coaxial plasma gun
has been discussed both theoretically and
experimentally.14–17The fundamental idea in all this work is
that a threshold value ofl th5m0I gun /Fgun must be ex-
ceeded in order that a spheromak is formed. The dimensions
of l th are an inverse length so one expects the threshold
parameter to be some constant of order unity divided by the
scale of the system. Sophisticated theories18 predict that for aa!Electronic mail: mbrown3@swarthmore.edu
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cylindrically symmetric gunl th53.83/r gun where 3.83 is the
first zero of the Bessel functionJ1. Note thatl th depends
only on gun geometry in this model. For SSX, 3.83/r gun

546 m21 wherer gun50.083 m.
A simple formation theory can be constructed by assum-

ing a thin radial current sheet that is free to move axially and
a purely radial stuffing flux~see Figure 3!. Force balance on
the current sheet requires that the magnetic tension of the
stuffing flux equals the netJ3B force. Since the gun current
produces an azimuthal fieldBu5m0I gun/2pr we can write
the magnetic pressure on the back of the sheet as:

PB5
Bu

2

2m0
5

m0I gun
2

8p2r 2
.

If we integrate this pressure over the annular face of the
current sheet we find for the netJ3B force:

F5
m0I gun

2

4p
ln~r gun /r inner!.

Now if the stuffing flux is distended an amountdz by the
magnetic pressurePB , then the work done by this force
equals the increase in magnetic energy:Fdz5DWmag

5(Bstu f f
2 /2m0)(pr inner

2 )dz. Noting thatFgun5Bstu f fpr inner
2

and solving forl we find:

l th5
m0I gun

Fgun
5

1

r inner
A 2

ln~r gun /r inner!
. ~1!

Interestingly, this expression also yieldsl th546 m21 for
our parameters (r gun50.083 m andr inner50.031 m).

B. Equilibrium

Immediately following formation, the spheromak relaxes
to a minimum energy state subject to the constraints of con-
stant magnetic helicity and zero magnetic flux (C50) at the
conducting wall.19–21 The steady state spheromak equilib-
rium is characterized by:

¹P5J3B. ~2!

FIG. 1. Two views of a spheromak with the magnetic fields and coordinate
axes indicated. The cross section at right is taken in the poloidal (r 2z
plane!. The flux conserver is shown in the cross section view only.

FIG. 2. A schematic of the SSX gun showing~a! small and~b! large flux conservers and the magnetic probes for formation and equilibrium measurements.
~c! shows both guns with two large flux conservers to allow reconnection studies.

FIG. 3. Spheromak formation geometry.
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This is simply an expression of static pressure balance be-
tween gradients in kinetic pressure and magnetic forces~the
general form of the Grad Shafranov equation!. Spheromaks
are typically characterized by lowb ~the ratio of plasma
pressure to magnetic pressure!, so the simplest equilibrium
model is then given by letting¹P50 in ~2! above. In this
case, the equilibrium equation reduces to a simple form:

¹3B5lB, ~3!

wherel is an inverse length and is in general a function of
the poloidal fluxC.

Constantl corresponds to the minimum energy, or force
free, state for the spheromak, and this simple model is often
an applicable one.19,20 The constant-l force free equation
can be solved directly with the boundary conditions of a
closed perfectly conducting right cylinder, giving an analyti-
cal solution:18

Br5B0

kz

kr
J1~krr !cos~kzz!,

Bt5B0

l

kr
J1~krr !sin~kzz!,

Bz5B0J0~krr !sin~kzz!,

C5B0

r

kr
J1~krr !sin~kzz!,

whereB0 is an arbitrary constant, and with:

kz5
p

L
, kr5

3.8317

R
, l5Akr

21kz
2, ~4!

whereR is the radius andL the length of the conserver. For
the SSX case,lSFC555 m21 for the small flux conserver
and lLFC518 m21 for the large flux conserver. Since
m0J5¹3B, then by~3!:

J5
l

m0
B ~5!

so thatJ is proportional and parallel toB. Constantl indi-
cates a flat current profile, sinceJ/B is constant, and hence
I z5*J•dA is proportional toC5*B•dA. Also characteris-
tic of this solution is that the magnetic axis is located atr
50.63R, whereR is the radius of the flux conserver.

Variablel states can be used to model spheromaks with
non uniform current distributions, which depart from the
force-free state. When considering variablel states, it is
convenient to expressl as a power series inC, and usually
only the first order term is relevant. This yields:22–24

l5l̄S 11aS 2
C

Cmax
21D D , ~6!

wherea governs the dependence onC, and wherel̄ is the
average value ofl over the plasma. Ifa is positive, then the
current profile is peaked which is typical of spheromaks in
decay, since the edges are cooler and more resistive than the
core. Negativea corresponds to hollow current profiles,
typical of spheromaks still being driven by the gun, while

zeroa is the fully relaxed force free state corresponding to
constantl. A similar convention can be used when second
order inC is desired, yielding:

l5l̄S 11aS 2
C

Cmax
21D1gS 2S C

Cmax
D 2

21D D . ~7!

The process can of course proceed to arbitrary order inC as
needed. Higher order inC allows description of more
sharply peaked current distributions. We have found that a
quadratic form ofl(C) is sufficient to fit our experimental
data.

When it is neccessary to consider the effects of plasma
pressure on the equilibrium~generally whenb.10%), a
more general description is needed. The Grad Shafranov
equation can be written in cylindrical coordinates:

¹•S 1

r 2
¹C D 14p2m0P81

m0
2

r 2
I zI z850, ~8!

whereP and I z are functions ofC and primes indicate de-
rivatives with respect toC. Because it involves three inde-
pendent quantities,C, P(C), and I z(C), the Grad Shafra-
nov equation does not uniquely determine the equilibrium. In
order to use the equation, two of the functions~usuallyP(C)
and I z(C)) are specified and the remaining one can be
solved for. We typically use forms forI z andI z8 which result
from Eq. ~5! and the expressions forl @Eqs.~6! and ~7!#.

A range of solutions have been calculated for both flux
conserver geometries and with both linear and quadratic cur-
rent profiles inC. We determine the models which best fit
our experimental data by trial and error. Examination of a
few solutions demonstrates the effects of various current pro-
files and flux conserver shapes on the equilibrium.

First, we consider the effects of device geometry, using
the force-free solution as an illustration. Figure 4 shows
three solutions generated in the two SSX flux conservers
~illustrated in Figure 2! and in a ‘‘perfect’’ closed cylinder
geometry. The closed cylinder and large flux conserver solu-
tions are negligibly close to one another. Agreement between
the analytical and simulated solutions is found in these con-
servers.l0518.4 m21 for the large flux conserver, in agree-
ment with the analytic solution’s formula forl @see Eq.~4!#.
This confirms that the solver is working properly. In contrast,
the small flux conserver is not a good approximation of a
closed cylinder geometrically. Most importantly, the sphero-
mak does not center in the small conserver, and flux pro-
trudes back into the gun. The magnetic axis sits atz
50.42L, rather than atz50.5L as it does in both the per-
fect and large flux conserver geometries. This means that a
probe placed atz50.5L will see a small nonzeroBr in the
small flux conserver, but zeroBr in the others. In addition,
though a full stability analysis was not performed, we note
that the small flux conserver spheromak may have a ten-
dency to tilt back into the gun sincelSFC.l th .

Next, we consider the effects of various current and
pressure profiles. We expect the force-free~constantl) state
to appear following the spheromak’s initial relaxation, since
the relaxation process tends towards minimum energy. This
solution is characterized by a magnetic axis at0.63R. Vari-
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ablel states with positivea, corresponding to peaked cur-
rent distributions, can account for spheromaks in decay.
Some trial and error is needed to determine the resonant
value of l̄ in these cases, since it is not exactly equal to the
constantl value. When first order positivea states are com-
puted, one can observe the shifting of the magnetic axis out
from 0.63R ~the constantl value! to .67R at a50.98. Sec-
ond order solutions push the magnetic axis out still farther.
Plots of several representative solutions are shown in Figure
5. We do not sustain the spheromak, so that detachment from
the gun occurs early and the plasma settles rapidly into a
constantl state after formation rather than a negativea state
which might correspond to current continuing to be driven
on the outer flux surfaces. Figures 5a and c~constantl and
quadraticl) represent the best equilibrium fits to data pre-
sented in section III B.

We have generated non-uniform pressure profiles but
found that we were unable to fit them to our data. Highb
states moved the magnetic axis out radially as expected but
degraded other aspects of the fit. Since the derivative of flux
is determined by both pressure and current, adding pressure
increasesCmax for a givenI z distribution. SinceBt depends
only on I z while Bp depends onC, this means that while
force free solutions have roughly equal toroidal and poloidal
field magnitudes, finite pressure solutions have relatively
more poloidal field. Pressure effects can be seen whenb
exceeds about 10%. Below this point, they are not distin-
guishable.

III. EXPERIMENTAL RESULTS

Measurements of spheromak formation and equilibrium
have been performed at the Swarthmore Spheromak Experi-
ment ~SSX!. Identical magnetized, tungsten coated plasma

guns (r gun50.083 m andr inner50.031 m! can be used to
independently form spheromaks in either small
r small5r gun50.083 m or larger large53r small50.25 m cop-
per flux conservers~see Figure 2!. In addition, guns can be
fired simultaneously into separate flux conservers for recon-
nection experiments. For the experiments discussed here,
Lsmall50.102 m andLlarge50.305 m so thatL/r is close to
1.22 in both cases. These dimensions satisfy the requirement
for stability against the tilt mode:L/r ,1.6725,26 though the
small conserver may still be unstable for other reasons. The
gun dimensions are identical in both cases to facilitate scal-
ing studies and comparisons.

The guns are powered by identical 10 kV, 25 kJ capaci-
tive power supplies~5 kV, 6 kJ typical!. A separate system
provides up to 4 mWb of stuffing flux. Typical SSX sphero-
mak densities arene<1015 cm23 in the small flux conserver
andne<1014 cm23 in the large flux conserver~from Alfvén
speed and particle inventory estimates!. Triple Langmuir
probe measurements in the large flux conserver confirm that
ne5531013 cm23 and showTe>20 eV so thatb<0.1.

The magnetic probes used for equilibrium measurements
consist of two linear arrays mounted in the SSX large flux
conserver or one in the small conserver as shown in Figure 2.
Each array in the large conserver consists of 11 sets of three
orthogonal coils in a stainless steel housing. In the small flux
conserver, a smaller probe with 5 coilsets is used. The stain-
less steel casings are thin enough so that the flux diffusion
time is short compared to relevant measurements~less than
0.1ms! and does not affect the probes. Each coilset measures
three axes simultaneously, so that vectorB is measured at 11
radial locations as well as at two locations along the length
of the machine and around it toroidally, for a total of 22
simultaneous measurements. Radial sensitivity is empha-

FIG. 4. Effects of geometry on the solution. Solutions for the poloidal flux
~a! in a perfect can, and~b! in the SSX large conserver are similar, while a
solution~c! in the small conserver is distorted, protruding more into the gun
region.

FIG. 5. Zero pressure solutions for the poloidal flux with variousl profiles.
~a! Constantl appropriate for early in decay,~b! linear l(C) and ~c! qua-

draticl(C) with l̄529 m21, a'0.22, andg'0.75 appropriate for late in
decay.
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sized since it is most crucial to determining the shape of the
equilibrium, while somez resolution is often helpful in order
to allow us to distinguish equilibria which differ from one
another mostly away from the symmetry axis. Details of
probe calibration and design are given in the appendix.

A. Formation

Scans ofBz magnetic data were taken at the edge of both
flux conservers in order to determine the formation threshold
and optimum operating parameters. Data were taken from
Fgun50 to 2.0 mWb at 0.25 mWb intervals and from
I gun50 to 100 kA at 10 kA intervals~a 9311 matrix!.
Averages of several shots were taken each operating point. In
Figure 6 we present the results of the scans.

Note first that the peak magnetic fields in the small flux
conserver~5 kG! are about a factor of 3 higher than in the
large flux conserver~1.5 kG! for the same gun parameters. If
energy is conserved, we expectB2 to scale like r 3 or
(Bsmall /Blarge)

25(r large /r small)
3. However, this is an over-

estimate since we also expect the relaxation process to be
less efficient in the large flux conserver by another factor of
r large /r small

14,27 so we expectB to scale roughly like r. For
SSX, Bsmall /Blarge53.3 and r large /r small53.0 verifying
this scaling.

Next, we note that there is a striking threshold in both
flux conservers atl th5m0I gun /Fgun>48 m21 close to the
value of l th546 m21 predicted in section II A. IfFgun is
too high andI gun too low then no spheromak is formed and

no magnetic signal is recorded. This threshold does not scale
with the dimensions of the flux conserver attached to the gun
and depends only on gun dimensions.

A few other features are worth noting. We find that as
Fgun→0 the spheromak fields vanish~even for largeI gun).
We took an extra set of data atFgun50.1 mWb to verify this
observation. This is understandable since asFgun→0 the
injected helicity vanishes and a finite helicity object like a
spheromak cannot be formed.28 In the large flux conserver
we find that the spheromak fields vanish at small but finite
I gun and Fgun ~even with l.l th). This is a reproducible
result for which we have no explanation.

B. Equilibrium

Most equilibrium data have been collected in the large
flux conserver, and this is where the most interesting and
relevant equilibria are observed. This conserver is also iden-
tical to that which will be used for reconnection experiments,
so the results apply directly to characterizing the reconnec-
tion flux reservoir. A typical shot, which displays the main
characteristics observed, is described in detail, followed by a
discussion of trends in the data.

A representative shot is shown in Figures 7 and 8. This
spheromak was fired in the large flux conserver with 5 kV on
the gun bank, 1.5 mWb of stuffing flux and about 100 kA of
peak gun current, a setting which was observed to produce

FIG. 6. Formation threshold data.~a! Small flux conserver,~b! Large flux
conserver withl th'48 m21 in both cases.

FIG. 7. Force free equilibrium data in the large flux conserver. Early in
decay (64ms! with flux function as depicted in Figure 5~a!.

FIG. 8. Quadraticl profile data in the large flux conserver. Late in decay
(91 ms! with flux function as depicted in Figure 5~c!.
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long lived, stable spheromaks. This shot displays the two
characteristic phases: constantl force-free state in early de-
cay, and a quadraticl state late in decay.

After a turbulent relaxation phase, the spheromak settles
into a state which is a very good fit to the force free constant
l state calculated above. Our numerical fit to the experimen-
tal data verifies the analytical prediction ofl'18 m21 @Eq.
~4!#. l varies only by about 10% across the machine. Pres-
sure is also small relative to magnetic field (b<10%). This
phase lasts from approximately 52 to 67ms and is shown in
Figure 7. It occurs significantly after the peak fields, which is
to be expected since the turbulent relaxation phase should
dissipate some of the magnetic energy. In this phase, the
poloidal field integrates out very close to zero, indicating that
flux contours are closed and the spheromak is fully formed
and detached from the gun. Toroidal and poloidal field are
very close in magnitude, indicating that the relaxation of
toroidal into poloidal flux has occurred and that the state is
very close to zero pressure. Further, as time passes, the field
profiles change only slowly and continuously, indicating that
quasi-static equilibrium is established. Also in this phase,
radial field decreases to about 10% ofBz with the occasional
exception of ther 50 reading. This indicates that the sphero-
mak is approximately centered in the conserver. Small devia-
tions from zero radial field are likely due to integration er-
rors. There are no oscillations in the magnetic fields,
indicating that the spheromak is force-free and stable. The
spheromak now begins slow decay.

As time progresses, the magnetic axis moves outward in
radius from 0.63R to 0.71R, as illustrated in Figure 8. The
peak in toroidal field also moves outward. Two factors may
contribute to this effect. If pressure effects are becoming
significant, this could move the magnetic axis outward and
produce the observed effect. This may be reasonable since
the plasma is being resistively heated through its lifetime,
potentially increasing pressure effects at the same time mag-
netic fields are becoming weaker. Alternatively, we may be
observing a peaked current state with nonconstantl. If in-
creased resistance in the cool edges of the plasma causes
current to fall off faster there, which is likely, then we will
end up with a peaked current profile state as described above.
If so, it must be a second order state, since no first order
force free solution has a magnetic axis at such larger . The
observed profile may also be a combination of these effects.
Since the toroidal and poloidal field magnitudes remain com-
parable, however, it is likely that pressure effects are small.
A full fit to models verifies that it is not possible that pres-
sure effects can cause the magnetic axis movement. The nu-
merical solution also yieldsP8'53105 Pa/Weber, corre-
sponding to ab<10%. This is likely to be too small to have
a significant effect on the equilibrium. A numerical fit shows
that a quadratic lambda profile~peaked current distribution!

model is the best fit to the data, withl̄529 m21, a'0.22,
andg'0.75, confirming the expectation of quadraticl and
low pressure. This equilibrium was presented in Figure 5.
Since we cannot satisfactorily fit finite pressure states to our
data we conclude that ourb must be less than 10%, and this
is confirmed by triple probe data.

Magnetic field profiles were measured in the small flux
conserver in order to verify scaling and flux conserver shape
effects. We found that although the fit was close to the mini-
mum energy state for part of the discharge~Figure 9!, the
magnetic axis was at approximatelyr 50.5R and a stable
equilibrium was never reached. The spheromak in the small
flux conserver lived only about 20–40ms ~about the pre-
dictedL/R time!, and never settled into a state which could
be matched by a reasonable pressure or current distribution.
We also found that the radial field was larger than expected,
even including expected distortion due to the~relatively!
larger opening into the gun. There are several possible ex-
planations for the poor performance of spheromaks in the
small flux conserver. First, our simulations show that sub-
stantial flux protrudes back into the gun entrance~see Figure
4c!. Geometrical perturbations from the gun opening could
severely degrade the equilibrium. Second, we could be ob-
serving a tilt instability as the the spheromak dynamically
falls back into the gun. Third, since the lifetime is short,
there is still significant current flowing in the gun. Perturba-
tions from gun current could therefore be affecting equilib-
rium. Finally, static fringe fields from the stuffing flux could
also affect equilibrium in the small flux conserver.

IV. CONCLUSION

We have used magnetic probe arrays to characterize for-
mation and equilibrium of spheromaks of two different sizes
at SSX. Our main conclusions are~1! we have verified that
the spheromak formation thresholdl th5m0I gun /Fgun is in-
dependent of the dimensions of the flux conserver attached to
the gun.~2! The peak magnetic field in the spheromak ap-
pears to scale like the inverse of the flux conserver radius for
the same gun parameters.~3! Equilibria following formation
~at least in the large flux conserver! are well characterized by
a constantl and a uniform current profile.~4! Late in decay,
departures from constantl are well characterized by al
profile quadratic inC. ~5! We see no evidence of finite pres-
sure effects.

These results can be compared to those of other re-
searchers who have studied spheromak equilibrium. Kitson
and Browning23 and Knox22 have both seen evidence of vari-
able l states in decaying spheromaks, but found that only
first order variablel states were distinguishable. In contrast,

FIG. 9. Small flux conserver equilibrium data.
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we find strong evidence for quadratic profiles in some cases.
Wysocki29 and Hart30 have seen evidence for significant
pressure effects, which we do not observe.

APPENDIX A: PROBE CALIBRATION

Substantial attention was given to ensuring that the mag-
netic probes used in these experiments were as accurate as
possible. In this appendix, we describe the methods used to
avoid cross coupling of signals, to obtain accurate integration
of fast magnetic signals, and evaluate probe perturbation on
the plasma.

Irregularities in winding and flexibility of the coil form,
especially at the very small coil sizes required to minimize
plasma disruption, result in cross-coupling between axes on
the order of 10%. This can cause significant problems when
the signal on one axis is very much larger than that on an-
other, since the coupled signal from the stronger axis will
completely overwhelm the desired signal on the weaker one.
This is a problem for instance at the edge of the flux con-
server or atz5L/2, whereBr'0, butBz andBt are large. A
technique has been devised which allows recovery of signal
without cross coupling to within, 1%. After assembly but
before insertion, a Helmholtz coil is used to apply a known
field along each axis to the probe, and the response of each
sensor coil in signal per unitḂ on each axis is determined,
giving for each coilset a matrix such that:

KḂ5S,

whereḂ is the time derivative of the magnetic field vector,S
is the signal vector, andK is a matrix such thatKi j equals
signal on thei axis due to unitḂ on the j axis. Then by
inversion:

Ḃ5K21S,

where K21 is the inverse of thesignal/Ḃ matrix obtained
above. These matrices have been calculated for all coilsets,
and are automatically applied to correct the signal by the
processing software. This method completely compensates
for coil misalignment, twisting of the form, and so on. The
alignment is re-verified after insertion by inserting a Helm-
holtz coil through the gun opening. The accuracy of the sig-
nal is then only limited by the accuracy with which we can
acquire signals which is better than 0.1%, or the accuracy of
alignment of the calibration field which is aboutu'0.5°.
The corresponding cross talk error is:

B'•dA

Bi•dA
5

B sin~u!

B cos~u!
50.008

resulting in a total cross talk error of about 1%, which should
not interfere with measurements except at the wall or pre-
cisely atz5L/2 whereBr should be exactly zero. In those
places, small deviations from zero are likely to be cross talk
error.

Due to the short (100ms! lifetime of the spheromak,
integration of theḂ signals to recover magnetic field is a
significant problem. Signals can be integrated either with the
use of analog RC integrators, or by samplingḂ at a high rate

~with an RC filter to remove the highest frequency noise! and
digitally integrating the signal in post processing. Each tech-
nique has its difficulties. Since noise is eliminated and the
integrated signal changes more slowly, analog integrators al-
low use of slower digitizers. However, they cause loss of
signal intensity and can ‘‘droop,’’ causing signal distortion
due to the discharge of the capacitor. On the other hand,
digital integrators offer great precision, but since errors in the
sum will propagate they require high sampling rates. SSX
has 32 channels of 10 MHz digitizers, and four at 50 MHz.
The 50 MHz digitizers are easily fast enough to digitally
integrate, and the 10 MHz units can do so with some signal
processing, so this method is chosen. The 10 MHz digitizers
are ‘‘corrected’’ by forcing the integral~i.e.,B) to zero at the
beginning and at end of the run after theḂ signal returns to
zero. This must be true physically since there is no field
before or after the experiment, and it is verified by the faster
digitizers. A correction is then applied to the rest of the sig-
nal to make it fit these conditions. This process produces
good agreement with the faster digitizers. It is incorporated
into the same automatic signal processing code which ap-
plies the cross-calibration matrix corrections. Despite these
steps, however, integration is the least accurate step in our
data acquisition, with possible errors as high as 10%. In or-
der to detect ground loops and possible HV shorts of the
probes to the casing, the processing code also looks to make
sure all the probes zero out at about the same time. A suspi-
cious probe is flagged allowing the experimenter to evaluate
it.

There is always concern, when inserting probes into the
plasma, that they will disrupt it so much as to invalidate
measurements. Tests in the small flux conserver seem to in-
dicate that this is not a significant problem. Tests were first
run with a small ‘‘nub’’ probe which extended only 1/49 into
the conserver, which should have very little effect. The same
type of runs were repeated with the long linear array. No
shortening of lifetime was observed, and signals were similar
to within shot variability limits, indicating that there was not
significant disruption. Since the probes are smaller in relation
to plasma size and energy in the lrge than in the small flux
conserver, we expect that disruption should not be an issue
there either.
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