3,819 research outputs found

    A privacy preserved and credible network protocol

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThe identities of packet senders and receivers are treated as important privacy information in communication networks. Any packet can be attributed to its sender for evaluating its credibility. Existing studies mainly rely on third-party agents that contain the packet sender's identity to ensure the sender's privacy preservation and credibility. In this case, packet senders run the risk that their privacy might be leaked by the agent. To this end, this paper proposes a Privacy Preserved and Credible Network Protocol (PCNP), which authorizes the agent to hide the identities of senders and receivers, while guaranteeing the credibility of a packet. The feasibility of the PCNP deployment is analyzed, and its performance is evaluated through extensive experiments.Ministry of Science and Technology of ChinaChinese Academy of Scienc

    A comprehensive review on the applications of coal fly ash

    Get PDF
    Coal fly ash, an industrial by-product, is derived from coal combustion in thermal power plants. It is one of the most complex anthropogenic materials, and its improper disposal has become an environmental concern and resulted in a waste of recoverable resources. There is a pressing and ongoing need to develop new recycling methods for coal fly ash. The present review first describes the generation, physicochemical properties and hazards of coal fly ash at the global level, and then focuses on its current and potential applications, including use in the soilamelioration, construction industry, ceramic industry, catalysis, depth separation, zeolite synthesis, etc. Finally, the advantages and disadvantages of these applications, themode of fly ash utilizationworldwide anddirections for future research are considered

    A new tow-parameter integrable model of strongly correlated electrons with quantum superalgebra symmetry

    Full text link
    A new two-parameter integrable model with quantum superalgebra Uq[gl(31)]U_q[gl(3|1)] symmetry is proposed, which is an eight-state electron model with correlated single-particle and pair hoppings as well as uncorrelated triple-particle hopping. The model is solved and the Bethe ansatz equations are obtained.Comment: 6 pages, RevTe

    A novel CO₂-responsive systemic signaling pathway controlling plant mycorrhizal symbiosis

    Get PDF
    Elevated atmospheric carbon dioxide (eCO₂) concentrations promote symbiosis between roots and arbuscular mycorrhizal fungi (AMF), modifying plant nutrient acquisition and cycling of carbon, nitrogen and phosphate. However, the biological mechanisms by which plants transmit aerial eCO₂ cues to roots, to alter the symbiotic associations remain unknown. We used a range of interdisciplinary approaches, including gene silencing, grafting, transmission electron microscopy, liquid chromatography tandem mass spectrometry (LC–MS/MS), biochemical methodologies and gene transcript analysis to explore the complexities of environmental signal transmission from the point of perception in the leaves at the apex to the roots. Here we show that eCO₂ triggers apoplastic hydrogen peroxide (H₂O₂)‐dependent auxin production in tomato shoots followed by systemic signaling that results in strigolactone biosynthesis in the roots. This redox‐auxin‐strigolactone systemic signaling cascade facilitates eCO₂‐induced AMF symbiosis and phosphate utilization. Our results challenge the current paradigm of eCO₂ effects on AMF and provide new insights into potential targets for manipulation of AMF symbiosis for high nutrient utilization under future climate change scenarios

    The interface between silicon and a high-k oxide

    Full text link
    The ability to follow Moore's Law has been the basis of the tremendous success of the semiconductor industry in the past decades. To date, the greatest challenge for device scaling is the required replacement of silicon dioxide-based gate oxides by high-k oxides in transistors. Around 2010 high-k oxides are required to have an atomically defined interface with silicon without any interfacial SiO2 layer. The first clean interface between silicon and a high-K oxide has been demonstrated by McKee et al. Nevertheless, the interfacial structure is still under debate. Here we report on first-principles calculations of the formation of the interface between silicon and SrTiO3 and its atomic structure. Based on insights into how the chemical environment affects the interface, a way to engineer seemingly intangible electrical properties to meet technological requirements is outlined. The interface structure and its chemistry provide guidance for the selection process of other high-k gate oxides and for controlling their growth. Our study also shows that atomic control of the interfacial structure can dramatically improve the electronic properties of the interface. The interface presented here serves as a model for a variety of other interfaces between high-k oxides and silicon.Comment: 10 pages, 2 figures (one color

    Fabrication and Magnetic Properties of Fe65Co35–ZnO Nano-Granular Films

    Get PDF
    A series of nano-granular films composed of magnetic metal (Fe65Co35) granules with a few nanometers in size and semiconductor oxide (ZnO) have been fabricated by a magnetron sputtering method, and excellent soft magnetic properties have been achieved in a wide metal volume fraction (x) range for as-deposited samples due to the exchange coupling between FeCo granules (a ferromagnetic interaction in nano-scale). In a wide range (0.53 <x < 0.71), the films exhibit coercivity HC not exceeding 15 Oe, along with high resistivity. Especially for the sample with x = 0.67, coercivities in hard and easy axes are 1.43 and 7.08 Oe, respectively, 4πMS = 9.85 kg, and ρ reaches 2.06 × 103 μΩ cm. The dependence of complex permeability μ = μ′ − jμ″ on frequency shows that the real part μ′ is more than 100 below 1.83 GHz and that the ferromagnetic resonance frequency reaches 2.31 GHz, implying the promising for high frequency application. The measured negative temperature coefficient of resistivity reveals that may be the weak localized electrons existing in samples mediate the exchange coupling

    In Situ Imaging of the Conducting Filament in a Silicon Oxide Resistive Switch

    Get PDF
    The nature of the conducting filaments in many resistive switching systems has been elusive. Through in situ transmission electron microscopy, we image the real-time formation and evolution of the filament in a silicon oxide resistive switch. The electroforming process is revealed to involve the local enrichment of silicon from the silicon oxide matrix. Semi-metallic silicon nanocrystals with structural variations from the conventional diamond cubic form of silicon are observed, which likely accounts for the conduction in the filament. The growth and shrinkage of the silicon nanocrystals in response to different electrical stimuli show energetically viable transition processes in the silicon forms, offering evidence to the switching mechanism. The study here also provides insights into the electrical breakdown process in silicon oxide layers, which are ubiquitous in a host of electronic devices.Comment: 7 pages, 7 figure

    Evidence for Anthropogenic Surface Loading as Trigger Mechanism of the 2008 Wenchuan Earthquake

    Full text link
    Two and a half years prior to China's M7.9 Wenchuan earthquake of May 2008, at least 300 million metric tons of water accumulated with additional seasonal water level changes in the Minjiang River Valley at the eastern margin of the Longmen Shan. This article shows that static surface loading in the Zipingpu water reservoir induced Coulomb failure stresses on the nearby Beichuan thrust fault system at <17km depth. Triggering stresses exceeded levels of daily lunar and solar tides and perturbed a fault area measuring 416+/-96km^2. These stress perturbations, in turn, likely advanced the clock of the mainshock and directed the initial rupture propagation upward towards the reservoir on the "Coulomb-like" Beichuan fault with rate-and-state dependent frictional behavior. Static triggering perturbations produced up to 60 years (0.6%) of equivalent tectonic loading, and show strong correlations to the coseismic slip. Moreover, correlations between clock advancement and coseismic slip, observed during the mainshock beneath the reservoir, are strongest for a longer seismic cycle (10kyr) of M>7 earthquakes. Finally, the daily event rate of the micro-seismicity (M>0.5) correlates well with the static stress perturbations, indicating destabilization.Comment: 22 pages, 4 figures, 3 table
    corecore