340 research outputs found
A Mean Field Approach for Optimization in Particles Systems and Applications
This paper investigates the limit behavior of Markov Decision Processes
(MDPs) made of independent particles evolving in a common environment, when the
number of particles goes to infinity. In the finite horizon case or with a
discounted cost and an infinite horizon, we show that when the number of
particles becomes large, the optimal cost of the system converges almost surely
to the optimal cost of a discrete deterministic system (the ``optimal mean
field''). Convergence also holds for optimal policies. We further provide
insights on the speed of convergence by proving several central limits theorems
for the cost and the state of the Markov decision process with explicit
formulas for the variance of the limit Gaussian laws. Then, our framework is
applied to a brokering problem in grid computing. The optimal policy for the
limit deterministic system is computed explicitly. Several simulations with
growing numbers of processors are reported. They compare the performance of the
optimal policy of the limit system used in the finite case with classical
policies (such as Join the Shortest Queue) by measuring its asymptotic gain as
well as the threshold above which it starts outperforming classical policies
A stochastic approximation algorithm for stochastic semidefinite programming
Motivated by applications to multi-antenna wireless networks, we propose a
distributed and asynchronous algorithm for stochastic semidefinite programming.
This algorithm is a stochastic approximation of a continous- time matrix
exponential scheme regularized by the addition of an entropy-like term to the
problem's objective function. We show that the resulting algorithm converges
almost surely to an -approximation of the optimal solution
requiring only an unbiased estimate of the gradient of the problem's stochastic
objective. When applied to throughput maximization in wireless multiple-input
and multiple-output (MIMO) systems, the proposed algorithm retains its
convergence properties under a wide array of mobility impediments such as user
update asynchronicities, random delays and/or ergodically changing channels.
Our theoretical analysis is complemented by extensive numerical simulations
which illustrate the robustness and scalability of the proposed method in
realistic network conditions.Comment: 25 pages, 4 figure
Distributing Labels on Infinite Trees
Sturmian words are infinite binary words with many equivalent definitions:
They have a minimal factor complexity among all aperiodic sequences; they are
balanced sequences (the labels 0 and 1 are as evenly distributed as possible)
and they can be constructed using a mechanical definition. All this properties
make them good candidates for being extremal points in scheduling problems over
two processors. In this paper, we consider the problem of generalizing Sturmian
words to trees. The problem is to evenly distribute labels 0 and 1 over
infinite trees. We show that (strongly) balanced trees exist and can also be
constructed using a mechanical process as long as the tree is irrational. Such
trees also have a minimal factor complexity. Therefore they bring the hope that
extremal scheduling properties of Sturmian words can be extended to such trees,
as least partially. Such possible extensions are illustrated by one such
example.Comment: 30 pages, use pgf/tik
Penalty-regulated dynamics and robust learning procedures in games
Starting from a heuristic learning scheme for N-person games, we derive a new
class of continuous-time learning dynamics consisting of a replicator-like
drift adjusted by a penalty term that renders the boundary of the game's
strategy space repelling. These penalty-regulated dynamics are equivalent to
players keeping an exponentially discounted aggregate of their on-going payoffs
and then using a smooth best response to pick an action based on these
performance scores. Owing to this inherent duality, the proposed dynamics
satisfy a variant of the folk theorem of evolutionary game theory and they
converge to (arbitrarily precise) approximations of Nash equilibria in
potential games. Motivated by applications to traffic engineering, we exploit
this duality further to design a discrete-time, payoff-based learning algorithm
which retains these convergence properties and only requires players to observe
their in-game payoffs: moreover, the algorithm remains robust in the presence
of stochastic perturbations and observation errors, and it does not require any
synchronization between players.Comment: 33 pages, 3 figure
Distributed Adaptive Routing in Communication Networks
In this report, we present a new adaptive multi-flow routing algorithm to select end- to-end paths in packet-switched networks. This algorithm provides provable optimality guarantees in the following game theoretic sense: The network configuration converges to a configuration arbitrarily close to a pure Nash equilibrium. In this context, a Nash equilibrium is a configuration in which no flow can improve its end-to-end delay by changing its network path. This algorithm has several robustness properties making it suitable for real-life usage: it is robust to measurement errors, outdated information and clocks desynchronization. Furthermore, it is only based on local information and only takes local decisions, making it suitable for a distributed implementation. Our SDN-based proof-of-concept is built as an Openflow controller. We set up an emulation platform based on Mininet to test the behavior of our proof-of-concept implementation in several scenarios. Although real-world conditions do not conform exactly to the theoretical model, all experiments exhibit satisfying behavior, in accordance with the theoretical predictions
Distributed Adaptive Routing in Communication Networks
In this report, we present a new adaptive multi-flow routing algorithm to select end- to-end paths in packet-switched networks. This algorithm provides provable optimality guarantees in the following game theoretic sense: The network configuration converges to a configuration arbitrarily close to a pure Nash equilibrium. In this context, a Nash equilibrium is a configuration in which no flow can improve its end-to-end delay by changing its network path. This algorithm has several robustness properties making it suitable for real-life usage: it is robust to measurement errors, outdated information and clocks desynchronization. Furthermore, it is only based on local information and only takes local decisions, making it suitable for a distributed implementation. Our SDN-based proof-of-concept is built as an Openflow controller. We set up an emulation platform based on Mininet to test the behavior of our proof-of-concept implementation in several scenarios. Although real-world conditions do not conform exactly to the theoretical model, all experiments exhibit satisfying behavior, in accordance with the theoretical predictions
Coupling from the past in hybrid models for file sharing peer to peer systems
International audienceIn this paper we show how file sharing peer to peer systems can be modeled by hybrid systems with a continuous part corresponding to a fluid limit of files and a discrete part corresponding to customers. Then we show that this hybrid system is amenable to perfect simulations (i.e. simulations providing samples of the system states which distributions have no bias from the asymptotic distribution of the system). An experimental study is carried to show the respective influence that the different parameters (such as time-to-live, rate of requests, connection time) play on the behavior of large peer to peer systems, and also to show the effectiveness of this approach for numerical solutions of stochastic hybrid systems
Optimal Routing in Deterministic Queues in Tandem
In this paper we address the problem of routing a stream of customers in two parallel networks of queues in tandem with deterministic service times in order to minimize the average response time of the whole system. We show that the optimal routing is a Sturmian word which density depends on the decomposition in continuous fraction of the maximum service time on each route. In order to do this we study the output process of deterministic queues when the input process is Sturmian
Dynamic voltage scaling under EDF revisited
The original publication is available at www.springerlink.comInternational audienceBasic algorithms have been proposed in the field of low-power (Yao, F., et al. in Proceedings of lEEE annual foundations of computer science, pp. 374–382, 1995) which compute the minimum energy-schedule for a set of non-recurrent tasks (or jobs) scheduled under EDF on a dynamically variable voltage processor. In this study, we propose improvements upon existing algorithms with lower average and worst-case complexities. They are based on a new EDF feasibility test that helps to identify the “critical intervals”. The complexity of this feasibility test depends on structural characteristics of the set of jobs. More precisely, it depends on how tasks are included one in the other. The first step of the algorithm is to construct the Hasse diagram of the set of tasks where the partial order is defined by the inclusion relation on the tasks. Then, the algorithm constructs the shortest path in a geometrical representation at each level of the Hasse diagram. The optimal processor speed is chosen according to the maximal slope of each path
- …