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Abstract. In this paper we show how file sharing peer to peer systems
can be modeled by hybrid systems with a continuous part corresponding
to a fluid limit of files and a discrete part corresponding to customers.
Then we show that this hybrid system is amenable to perfect simulations
(i.e. simulations providing samples of the system states which distribu-
tions have no bias from the asymptotic distribution of the system). An
experimental study is carried to show the respective influence that the
different parameters (such as time-to-live, rate of requests, connection
time) play on the behavior of large peer to peer systems, and also to
show the effectiveness of this approach for numerical solutions of sto-
chastic hybrid systems.

1 Introduction

Hybrid systems are very useful to model discrete systems with several time
and space scales. In that case, one typically uses fluid limits for the parts of
the system with fastest and largest scales. These models have been introduced
in various domains under the form of fluid queues [1], continuous Petri nets
[2], or timed automata [3]. In this paper, we will consider one such example,
namely peer to peer systems, where two types of dynamics are superimposed.
The slow dynamics concerns the customers, who join and leave the system. The
fast dynamics concerns the files and their transfers between the customers. A
natural model for file sharing peer to peer systems mixes a discrete stochastic
system to model the behavior of the customers and a deterministic differential
equation for the mean behavior of the files, seen as a fluid quantity.

The analysis of such stochastic hybrid systems is often difficult on a mathe-
matical as well as on a numerical point of view and such large hybrid systems
are often considered computationally untractable. Simulation approaches are
efficient alternatives to estimate their behavior by providing samples distrib-
uted according to their asymptotic distribution. However, simulation has several
drawbacks. First, simulations do not make any sense unless the system has er-
godicity properties, which are sometimes difficult to check. Second, even under
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the right ergodicity conditions, classical simulation techniques only provide ap-
proximations of the asymptotic behavior. The longer the simulation the more
accurate the result, but it is usually hard or impossible to be more precise than
this general statement. Recently, Propp and Wilson have used backward cou-
pling techniques ([4]) to design a simulation algorithm to get perfect samplings
(i.e. whose distributions are not approximations but the exact asymptotic dis-
tributions) of discrete time, finite Markov chains.

In this paper we show how their idea can be adapted to the infinite and
continuous case at hand, by using regeneration points. We use this property to
design a perfect simulation algorithm of our peer to peer model, by using addi-
tional monotonicity properties. Finally, we carry an experimental study of the
performances of the model based on this sampling technique. A similar approach
has been used in [5] for decoupled hybrid systems (where the discrete part does
not depend on the continuous one). In that case, the coupling of the perfect
simulation occurs in a very controlled manner because the system is uniformly
contracting. Here however, the interplay between the discrete and the continuous
parts are more intricate so that the coupling time might have a larger variance.

Actually, the goal of this paper is two-fold. First, we propose a new hybrid
model for file sharing P2P systems, combining the effects of popularity and
age decays of files on the customers behavior. Second, we show how this kind of
stochastic hybrid systems can be solved numerically by using a new and powerful
simulation method based on coupling from the past properties. In practice, this
approach has proved to be very fast and we have been able to treat very large
cases (with state spaces of size larger than 107) within one or two minutes over
a standard PC.

2 A Hybrid Model of Peer to Peer File Sharing Systems

Downloading popular multimedia content from the Internet can take a long time
due to bandwidth bottlenecks and to Web server overload. The central idea of
peer to peer (P2P) systems is to leverage the downloaders’ own (often unused)
resources to provide a globally better service. In the context of file download, the
resource is upload bandwidth and the service is a faster diffusion of popular files.
For instance, a popular file F downloaded by a user A may also be of interest to a
user B which is “closer” to A than to the origin Web server hosting file F . Then
if B downloads file F from A instead of the origin server, the benefit is threefold :
B downloads the file at a high rate on the local network; B doesn’t contact the
origin server, which reduces the load on this server and finally, bandwidth is
saved on the wide-area network since the data is transferred locally.

An important aspect of P2P systems is that clients (downloaders) are also
servers (uploaders). For this reason, these systems are said “self-scaling” since
the resources increase with the demand.

Among P2P systems, one of the most popular applications is file sharing. The
most famous systems such as KaZaA or Gnutella [6,7] belong to this category.
They can mainly be described by the copies of files that all the users make
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available for download (typically, copies of files previously downloaded). These
systems may be intricate and are extremely difficult to model in full details. Here
are the main simplifications used in this paper. First, the peers are assumed to be
statistically homogeneous and we only consider two variables, N(t), the number
of customers (or nodes) connected to the system at time t and x(t), the number
of copies of all the files which are available globally in the system. We will see
below that x(t) can also be viewed as the popularity index of the system. The
second assumption is that downloads always succeed and download times are
neglected since files can be split into fragments of “unit” size for download.

2.1 Modelling with a Hybrid System

The variable N(t) being discrete, it only changes values at discrete times. Thus
N(t) is driven by jump instants, which forms a point process T0 = 0 (time

origin), T1, . . . Tn. Let (τn)n∈N be the sequence of inter jump times: τn
def
= Tn −

Tn−1. At each time Tn, each customer has the opportunity to see the global
state of the system (N(T )n), x(Tn)). Based on this information, each customer
decides either to join, or to leave or even to remain as is. Therefore, the total
number of connected customers N(Tn) is a continuous time Markov chain, which
infinitesimal generator is given in Figure 1. This infinitesimal generator describes

10 n − 1 n + 1 Nmax

(λ + νx)Nmax (λ + νx)

µ
µNmaxµ(n − 1) µ(n + 1)

n

(λ + νx)(Nmax − n + 1)
(λ + νx)(Nmax − n)

µn

Fig. 1. The infinitesimal generator for the Markov process N

the fact that each customer leaves the system with a constant rate μ. Also, each
customer joins the system with a rate proportional to the popularity of the
system (which is proportional to x), plus a “blind” rate λ, independent of x.
The behavior of N(Tn) can be written under a constructive form as

N(Tn) = ϕ(N(Tn−1), x(Tn−1), ξn, τn), (1)

where {ξn}n∈N is a random process of innovations, uniformly distributed over
[0, 1], and ϕ describes the dynamics of N at jump instants:

1. If ξ > 1−λ′ + ν′x(Tn−1)(Nmax−N(Tn−1)), then the next event is a customer
arrival: N(Tn) = N(Tn−1) + 1.

2. If ξ < μ′N(Tn−1), then the next event is a customer departure: N(Tn) =
N(Tn−1) − 1.

3. Otherwise, this is a null event, i.e. no customer arrives nor leaves and the
system is left unchanged at time Tn: N(Tn) = N(Tn−1) .
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As for the continuous part, x(t) is governed by a discrete process at jump in-
stants, Tn. Upon a customer departure, it takes away all the documents it was
responsible for. Since our model is symmetric over all customers and all files, the
number of lost documents is uniform over all customers so that it corresponds
to a proportional fraction of the total fluid. Therefore if the event at Tn is a

departure then x(Tn) = x(T−
n )

N(T −

n
)−1

N(T −

n )
. This fraction of files lost may also be a

random variable with mean
N(T −

n
)−1

N(T −

n )
to account for user heterogeneity as shown

in Section 3.8. When a node joins the system, it does not bring exogenous files
with him upon its arrival. This assumption can easily be relaxed as shown in Sec-
tion 3.8. The increase of the number of files will come from the future downloads
of the newcomer: x(Tn) = x(T−

n ). Upon a null event, x is also left unchanged,
x(Tn) = x(T−

n ). We denote this evolution by

x(Tn) = h(N(T−
n ), x(T−

n ), ξn), (2)

As for the behavior of x(t) between jump times, it is given by a deterministic
differential equation, In [Tn, Tn+1),

dx

dt
= f(N(Tn), x, t) = σN(Tn)e−αx + σN(Tn)x

N(Tn)C − x(t)

N(Tn)C
− θx. (3)

Here is a brief account on the dynamics of x between jumps. The first term
σNe−αx(t) corresponds to the rate at which new files are introduced in the
system. First, σ is the rate at which each customer requests files. As for e−αx(t),
it corresponds to the probability that the requested file is not yet present in the
system (called the miss probability in the following) so that a download from
outside is needed. The form of this term has been derived experimentally as
follows.

The number of requests for each file typically follows a Zipf law with parameter
β. Therefore, the number of copies per file also follows a Zipf law, since each
request results in the creation of a new copy. In our model, we only know x,
the total number of copies while the miss probability depends on the average
number of distinct files, d(x). Actually, the miss probability is uniform over all
missing files (new files do not have any popularity yet) and is equal to 1−d(x)/C.
Computing d(x) exactly is intricate and we could not find a close-form formula
for it. However, we found empirically that d(x) is very close to C(1− exp(−αx))
as seen in Figure 2. Parameter α was found to be equal to e−β/C. Finally, we
can assume that new files are introduced in the system with rate σN(t)e−αx(t).

The second term σN(Tn)x(t)N(Tn)C−x(t)
N(Tn)C corresponds to the increase of the

number of copies linearly in the popularity (x(t)), provided that the copy is not

yet present locally (the probability of local absence being N(Tn)C−x(t)
N(Tn)C ).

The last term −θx(t) corresponds to the decrease of the number of copies due
to obsolescence (each copy is removed from the system by the system adminis-
trator at rate θ ).
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This differential equation is Lipschitz everywhere, therefore, it admits a unique
solution, once an initial condition x0 is given, denoted F (x0, t). No closed form of
the solution is known, so that one needs to use a numerical method for integra-
tion. This equation is prone to numerical instability because the second derivative
of x(t) is large when t goes to infinity. In our programs, we have used a finely
tuned ad-hoc Runge-Kutta integrator with adaptative step sizes [8]. In any case,

the step size is always larger than ε/(T ||f ′||) where ||f ′|| = supN,x
df(N,x)

dx , for
integrating with precision ε over an interval of length T . No further details will
be given in this technical issue.

3 Coupling from the Past

Given the stochastic hybrid model for file sharing systems, we now show how to
compute its steady state behavior.

3.1 Embedded Markov Chain

In this part we only study the system at its jump instants. The behavior at
arbitrary instants can be easily derived as shown in Section 3.7.

Lemma 1. The embedded sequence at jump times , Sn
def
= (N(Tn), x(Tn)) is

a homogeneous continuous time Markov chain over a continuous domain, D ⊂
N × R.

Proof (sketch). The state of the process at time Tn only depends on the state
at time Tn−1, the innovation ξn and the n-th inter-arrival of the jump process
τn = Tn − Tn−1, which value only depends on the state at time Tn−1. This
means that (N(Tn), x(Tn)) is a homogeneous Markov chain over the domain of
all reachable states, D ⊂ N × R.
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In the following we will denote this global construction of this peer to peer
Markov chain (P2P MC) as Sn = Φ(Sn−1, ξn). For simplicity, we also denote

Φ(S,ξ1, . . . , ξn)
def
= Φ(· · · Φ(Φ(S,ξ1), ξ2), · · · ).

The Markov chain Sn can be uniformized into a discrete time Markov chain
(useful for simulation purposes) using the constant Λ = Nmax(λ+νCNmax +μ).

Lemma 2. The chain Sn is uniformly ergodic over D: there exists a non-trivial
measure ϕ over D, some m > 1 and 0 ≤ β ≤ 1 such that ∀x ∈ D, Pm(x, ·) ≥
βϕ(·). Moreover, it has an atom in (0, 0) (i.e. (0,0) can be reached with a positive
probability, starting from any other state).

Proof. The discrete part, N(Tn) follows a birth and death process. Therefore,
P(N(Tn) = 0|N(0) = N0, x = x0) ≥ P(N(Tn) = 0|N(0) = Nmax, x0 =
CNmax) ≥ μnNmax!/Λn if n ≥ Nmax. Again, m = Nmax, ϕ = 1I(0,0) and
β = Nmax!(μ/Λ)Nmax verify the definition of uniform ergodicity. The fact that
ϕ = 1I(0,0) means that (0, 0) is an atom.

Lemma 2 implies directly that Sn admits a unique stationary distribution (us-
ing general results for continuous Markov chains, see for example, [9]). Let
Pn(s, A) denote the transition law of n steps of the chain Sn (This is the
probability P(Sn ∈ A|S0 = s) ). The stationary measure Π of S satisfies
Π(A) =

∫

D P 1(s, A)Π(ds), for all measurable set A in D.

3.2 Computing the Stationary State

If Π can be computed explicitly, there are many ways to draw samples from
it. However, in most cases, analytical or even numerical computations of Π are
impossible to obtain, either because the domain D is huge (in finite cases) or
because the structure of the transition kernel P 1(s, A) is too complex.

Without analytical or numerical knowledge of Π the most popular method
for sampling from Π is simulation. The classical Monte-Carlo simulation consists
in choosing an arbitrary initial value S0 = s0 in D and to use the constructive
equations given in Equations (1), (2),(3) to generate S1, . . . , Sn by using a ran-
dom number generator for ξ. This technique works asymptotically because the
sequence of samples converges in law, in the sup-norm, to the stationary distri-
bution: limn→∞ supA |Pn(s0, A) − Π(A)| = 0. However, for a given finite n, the
gap with the exact distribution depends on the convergence rate to the station-
ary distribution which is unknown in general. Here, we will show how to compute
a sample in finite time which distribution is exactly Π (hence the name perfect),
using a backward coupling technique. This technique was proposed for the first
time in [4] for Markov chains over finite state spaces. The main idea is to run
several simulations in parallel starting in the past from all possible initial states.
If all the trajectories coincide at time 0 (meaning that they have all coupled
at some point in the past) then the simulation stops and outputs the common
value of all the trajectories at time 0, which happens to be a perfect sample of
the chain.



Coupling from the Past in Hybrid Models for File Sharing P2P Systems 223

Obviously, simulating trajectories from all initial states cannot be done for
continuous state spaces. However, it was shown in [10] that backward coupling
can also be defined for continuous state Markov chains. Here, we do not need
the general theorems in [10] and we show how the backward coupling idea can
be applied for the P2P MC using directly its uniform ergodicity.

Theorem 1. The vertical backward coupling time

K
def
= min{n ≥ 0 : Φ(s, ξ−n, . . . , ξ−1, ξ0) = Φ(r, ξ−n, . . . , ξ−1, ξ0), ∀r, s ∈ D},

is a well defined random variable. Furthermore, for all s ∈ D, the random
variable Φ(s, ξ−K , . . . , ξ−1, ξ0) is distributed according to measure Π (denoted
Φ(s, ξ−K , . . . , ξ−1, ξ0) ∼ Π).

Proof. Let us consider the sub-sequence Smn that makes m steps of the tran-
sition Kernel where m = Nmax. As shown in Lemma 2, with probability pc >
μNmaxNmax!/ΛNmax , then Smn = (0, 0). Therefore, K is a finite random vari-
able, by Borel-Cantelli. Now, if s∞ is any state distributed according to the
stationary measure Π , then Φ(s∞, ξ−n, . . . , ξ−1, ξ0) is also stationary for all
n > 0, by definition of Π . By choosing n = K, we get for an arbitrary state s,
Φ(s, ξ−K , . . . , ξ−1, ξ0) = Φ(s∞, ξ−K , . . . , ξ−1, ξ0) ∼ Π .

From Theorem 1, one may construct an algorithm providing a sample of the chain
which has the stationary distribution Π : simulate backward in time starting from
an arbitrary state and using steps of size m, until ξ−n < pc, where S−n+1 is set
to (0, 0). This algorithm has two major drawbacks: the kernel Pm is very difficult
to compute and the run may last for long (because pc is very small). They might
make it impossible to use in practice. One way to deal with these two problems
is to use structural properties of the P2P chain Sn, such as monotonicity.

3.3 Monotonicity Issues

The final class D admits the natural component-wise ordering: (N, x) ≤ (N ′, x′)
if N ≤ N ′ and x ≤ x′. The chain S is said to be monotone if (N, x) ≤ (N ′, x′)
implies that Φ(N, x, ξ, τ) ≤ Φ(N ′, x′, ξ, τ) for all ξ and all τ .

To test if the chain is monotone, one considers two chains S1 and S2 starting
with ordered values, N1(0) ≥ N2(0) and x1(0) ≥ x2(0).

One must first consider the evolution between jumps. It should be clear that
the differential equation (3) is monotone in N as well as in its initial condition.
Therefore, if N1(0) ≥ N2(0) and x1(0) ≥ x2(0), then for all time t ≥ 0, x1(t) ≥
x2(t).

As for the behavior of the chain at jump times, it is monotone as long as
ξ > 1 − λ′Nmax,However if ξ < 1 − λ′ + ν′x(Tn−1)Nmax, the event may either
be a departure or a null event for both chains. The following tricky situation can
occur: μ′N2(Tn−1) < ξ < μ′N1(Tn−1). This corresponds to a departure for S1

and a null event for S2. Now, if x1(T
−
n ) and x2(T

−
n ) are too close, the following

can happen: x1(Tn) = x1(T
−
n ) − x1(T

−
n )/N1(Tn−1) ≤ x2(T

−
n ) = x2(Tn). So that

the chain is actually not monotone under such events.
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3.4 Upper and Lower Envelopes

In order to deal with monotone systems, we introduce upper and lower envelopes
of the trajectories of the Markov chain S, S1 = (N1, x1) and S2 = (N2, x2),
respectively. The upper (resp. lower) envelope start at time t = 0 in state
(Nmax, C) (resp. (0, 0)). The upper (resp. lower) envelope evolve exactly as
the Markov chain for all events which cannot cause a swap of the ordering be-
tween the two trajectories. Whenever a potential swapping event occurs, then, let
N3 = ⌊ξ/μ′⌋ be the largest value of N for which ξ is the null event. For N3+1 and
larger values of N , ξ would be a departure. We set S1(Tn) = (N1(Tn−1) − 1, x1)
and S2(Tn) = (N2(Tn−1), x2(T

−
n ) N3

N3+1 ) so that the order remains unchanged be-
tween S1 and S2 Such an event can be seen as a “dummy” departure for S2 and
a “dummy” arrival in S1. The construction of the envelopes (S1(Tn), S2(Tn))
given above can be written under the form of two new functions Γ1, Γ2 that
describes the Markovian evolution of both envelopes at jump times: for j = 1, 2,

Sj(Tn) = Γj

(

S1(Tn−1), S2(Tn−1), ξn, τn

)

.

Note that by construction of Γ1, Γ2, the envelopes have been built such that
S1(t) stays above S2(t) for all time t ≥ 0 as soon as S1(0) is above S2(0). So
the envelopes have a monotone behavior. Also note that by construction, for all
initial state of the initial P2P MC, S(0) = (N, x) and all time t: S1(t) ≥ S(t) ≥
S2(t).

3.5 Perfect Simulation Algorithm for Peer to Peer Systems

The following theorem is the theoretical foundation of our perfect simulation
algorithm for peer to peer systems.

Theorem 2. The Markov chain (S1(Tn), S2(Tn)) hits the diagonal (i.e. states
of the from

(

(N, x), (N, x)
)

) in finite time a.s.. The hitting time K ′′ =

min
{

n : Γ1

(

(Nmax, C), (0, 0), ξ−K , . . . , ξ0

)

= Γ2

(

(Nmax, C), (0, 0), ξ−K , . . . , ξ0

)}

is a vertical backward coupling time of the Markov chain S, so that for all initial
state s, Φ(s, ξ−K′′ , . . . , ξ−1, ξ0) ∼ Π.

Proof. The first part of the proof is similar to the proof of the uniform ergod-
icity of chain S. Indeed, if a large number of departures occur, both envelopes
will eventually reach (0, 0). Since this happens with a positive probability, the
Markov chain (S1(Tn−1), S2(Tn−1)) is uniformly ergodic and K ′′ is a finite ran-
dom variable with finite expectation.

As for the second part of the proof, it simply uses the fact that S1(t) ≥
S(t) ≥ S2(t) for all initial conditions for the chain S. Consider a stationary initial
condition S(−K ′′) ∼ Π . Then, S(0) = Φ(S(−K ′′), ξ−K′′ , . . . , ξ−1, ξ0) ∼ Π by
stationarity and S1(0) = S(0) = S2(0) by definition of K ′′.
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From Theorem 2, it is possible to derive an algorithm to compute both an upper
bound on K ′′ and a sample from Π . Here is the outline of such an algorithm.
Start at time −k (at the beginning, k = −1) and simulate in parallel the lower
and upper envelopes, starting respectively in states (0, 0) and (Nmax, C), using
the same random variables, (τ−k, ξ−k), · · · , (τ−1, ξ−1), (τ0, ξ0) for both of them.
If at time 0, both envelopes reach the same state (N0, x0), then this means (using
theorem 2) that the system has coupled, K ′′ ≤ k and (N0, x0) ∼ Π . Otherwise,
generate a new random innovation (τ−k−1, ξ−k−1), and restart at time −k − 1
with initial states (0, 0) and (Nmax, C).

A classical improvement is to double the number of steps backward at each
iteration, so that the simulation time becomes linear in the total number of steps
(κ) which is most twice the coupling time K ′′.

Another improvement is to stop when both envelopes are close enough. A
stopping test on equality is theoretically possible since both envelopes couple
in (0, 0) with positive probability, and remain exactly equal from this point
on. However, the probability that N ever reaches 0 is extremely small (less
than 10−300 in the examples of Section 4). This means that the average vertical
coupling time is huge. Testing for a small gap between both envelopes reduces the
simulation time drastically and keep guarantees on the intervals on the measures
as seen in the following. The complete algorithm is given as Algorithm 1.

Algorithm 1. Backward simulation for P2P MC
κ = 1;
repeat

κ = 2κ;
S1 := (Nmax, C) ,S2 := (0, 0) {Initialize the two envelopes at time −κ}
for i = κ downto κ/2 + 1 do

ξ[i] :=Random(Uniform over [0, 1]); τ [i] :=Random(exponential with rate Λ)
end for

for i = κ downto 1 do

S1 := Γ1(S1, S2, ξ[i], τ [i]) , S2 := Γ2(S1, S2, ξ[i], τ [i])
end for

until S1Ṅ = S2Ṅ and S1ẋ − S2ẋ ≤ ε/3
return S1

In Figure 3, we display a perfect simulation of S1, S2. Note that several dummy
events on S1, S2 are visible. They all correspond to discontinuous jumps of S2

and cusps of S1. Also note that the trajectories of x and N are a very high
positive correlation: x and N both increase and decrease at the same time. This
shows the effect of popularity: when the popularity is high, more customers
get connected and they download more files, thus increasing the popularity.
The total complexity of the program is κ(c(Γ1) + c(Γ2)) + 2p, where c(Γi) is a
constant corresponding to the time to compute Γi and p is the total number of
steps needed to integrate the differential equation over the total simulated time,
T =

∑κ
i=1 τ [i].
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Fig. 3. Coupling of the trajectories of the two envelopes S1, S2 for N (left) and x
(right) as generated by Algorithm 1

Since κ ≤ 2K ′′ and p ≤ T 2

ε supN,x
df(N,x)

dx , the complexity of the algorithm is
given on average by the following lemma.

Lemma 3. The average complexity of Algorithm 1, with precision ε is

O

(

EK ′′ +
1

ε

(

EK ′′

Λ
+

E(K ′′2)

Λ2

))

. (4)

Computing EK ′′ is a difficult is out of the scope of this paper. We carried
out several experiments to measure the number of backward steps κ ≤ 2K ′′ in
Figure 6.

3.6 Confidence Intervals

The outputs of the i-th run of the algorithm are numerical approximations of
the couples (Si

1 = (N i
1, x

i
1), S2

i = (N i
2, x

i
2)). The numerical integration of the

differential equation yields a global error ǫ. The integration steps h are chosen
small enough so that ǫ ≤ ε/3. Then, the outputs of the algorithm are such that
the exact values verify xi

1 − xi
2 ≤ ε.

Let E be an interval E = [a, b] ⊂ [0, C] for which we want to compute πx(E)
with confidence c. The central limit theorem gives the following confidence in-

terval I =
[

p̂1 − βcv

2
√

M
, p̂2 + βcv

2
√

M

]

, where βc the c-percentile for the normal law

and v =
√

πx(E)(1 − πx(E)) ≤ 1/2 and p̂1 = 1/M
∑M

i=1 1{xi
1 ∈ E ∧ xi

2 ∈ E},

p̂2 = 1/M
∑M

i=1 1{xi
1 ∈ Eε ∨ xi

2 ∈ Eε}.

3.7 Stationary State at Arbitrary Instants

Algorithm 1 provides samples of the stationary distribution at jump instants.
However, this distribution may significantly differ from the distribution of the
system at arbitrary instants. From the PASTA [11] property, this latter distrib-
ution can be sampled simply by pursuing each trajectory during a random time
independent of the system, distributed according to the jump process.
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3.8 Adding Files at Jump Times

In this section we show how the model can be modified to take into account
additional features of a P2P system. First, the fraction of files lost when a user
leaves the system need not be a constant. It can be a random fraction η of the files
present before the jump, with η following an arbitrary distribution with mean
N(T −

n
)−1

N(T −

n )
. Also, some users may connect the system to inject new files in the

system. These files may be intrinsically popular. This can easily be incorporated
in the model by injecting a random number of copies δ when a node brings one
of these files: upon a join event,

x(Tn) = x(Tn) +

{

0 with probability 1 − p
δ(x(Tn), N(Tn)) with probability p

A possible model for δ is the following. Let M = C − d(x) be the total number
of missing files. When a file D is injected it is chosen according to the popularity
Zipf distribution PM (D). The number of injected copies is then a fixed number
proportional to the number of free places NC−x: δ = P (D)ω(NC−x), where 0 <
ω < 1 is a constant. This jump preserves the ordering between both trajectories
and can be incorporated in the algorithm simply by modifying function h. This
illustrates the flexibility and simplicity of the perfect simulation algorithm.

4 Numerical Experiments

The Algorithm 1 has been implemented in Java. All experiments reported here
are carried out on a 2GHz Pentium 4 with 1GB of RAM. We have chosen realistic
parameters for a rather large P2P model resembling a typical file sharing system.
Here, C = 1000, Nmax = 1000, μ = λ = 10−5 (an average customer stays
connected/disconnected for 24 hours); ν = λ/(CNmax), so that the popularity
plays the same role as the exogenous process for the connection rate of customers;
σ = 10−4 (an average customer emits a request every 3 hours); θ = 10−4, (3 hour
time-to-live for copies of files) α = e−1/C (the Zipf-like popularity distribution
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Fig. 4. The density of the stationary distribution of the number of customers (right)
being connected and of the number of copies (left) in the hybrid model of a P2P system,
as computed by perfect simulation
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has parameter 1). The total computational time to get the asymptotic density
of copies is about 2 hours, for a total of 10000 independent runs. Note that in
Figure 4, the distributions of x and of N are centered on their average values
and have rather small variances. In the following experiments, we will report
only the average value of x or N (with confidence intervals).

Since θ is the only parameter that the system designer can control, we have
computed the average value of the number of copies when θ varies. Figure 5
shows an interesting cut-off behavior: the number of files remains more or less
constant until θ becomes very large (θ ≈ 0.1, meaning copies are removed after
10 seconds on average), where the number of copies drops to 0.
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Fig. 5. Average number of copies as a function of θ

An important criterion for applicability of perfect simulation is the simulation
time, which is random. The simulation time is directly related to the number of
backward steps κ, which is doubled at each iteration in the algorithm. In order
to evaluate experimentally how κ behaves when the state space of the system
increases, we have run several simulation using the parameters λ = μ = ν = σ =
θ = 1 and we let the state space Nmax×C grow from 0 to one million. As seen in
Figure 6, the number of iterations κ of the simulation is almost deterministic and
may only take two values as N and C grow. Also, κ is sub-linear in Nmax × C,
which is quite good for perfect simulations.

5 Asymptotic Approximations

The solution xN of the differential equation (3) admits an asymptote ℓN when t
goes to infinity. The asymptote is the smallest solution of fN (x) = 0. We consider
the asymptotic rate of convergence of xN to its asymptote, ℓN as

γN = lim
t→∞

f(xN (t)) − fN (ℓN )

xN (t) − ℓN
=

df

dx
(ℓN ) = −ασNe−αℓN + σN −

2σℓN

C
− θ.

When the rate of convergence γN of xN (t) to its asymptotic value, is larger than
the jump rate Λ, then in most cases, x will actually be very close to ℓN before
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Fig. 6. Number of backward steps κ (in log scale for the number of iterations) as
Nmax × C vary

the next jump occurs. Therefore, one may disregard the transient behavior of x
and let x jump directly from ℓN1

to ℓN2
whenever a jump from N1 to N2 occurs.

This actually makes the system discrete since both x and N only take discrete
values.

A visual illustration of this behavior is given in Figure 7 where two trajectories
of the variable x are given with σ = Λ and σ = 10Λ respectively. In the second
case, the rate of convergence of x to its asymptotic value is much larger than
the jump rate and the trajectory of x looks like a staircase.
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Fig. 7. Two behaviors of x with two rates of convergence

In that case, the stationary distribution Π of (N, x) can be approximated by

Π ′(N = k, x = ℓk) =
1

Ω

(

Nmax

k

)

1

μk

k−1
∏

i=0

(λ + νℓi),

where the normalization constant Ω is such that all probabilities sum to one.
Computing ℓk for each k is numerically easy using a Newton method. Here,
the derivative of f at ℓk is large so that the computation can be done with a
large precision quite fast. Then, generating samples according to the distribution
Π ′ is rather simple and can be done using aliasing techniques [12]. We have
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compared this approximation with the exact samples (N1, x1) computed by the
simulation algorithm presented in Section 3. Numerical evidence show that when
γN > Λ/10, the approximation becomes very good and can be used instead of
our perfect sampling method. If γN < Λ/100, then the approximation is not
valid any longer.

6 Conclusion

In this paper we have presented a simulation study of a stochastic hybrid systems
providing guaranteed samples of a complex peer to peer system modeled by
hybrid equations.

Our simulations are based on backward coupling techniques that provide sta-
tistical guarantees on its samples. We believe this technique is well adapted to
stochastic hybrid systems because they enable us to manipulate continuous vari-
ables in a coherent way and because they make numerical computations of the
behavior of the system possible because the memory space required and the
coupling time are small with respect to the size of the state space.
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