323 research outputs found

    HGF/Met axis has anti-apoptotic and anti-autophagic function in hypoxic cardiac injury

    Get PDF
    Ischaemic heart disease is the main cause of death in western countries. Cardiac tissue is primarily damaged by cardiomyocyte cell death triggered by low oxygen supply to the heart (hypoxia). The current therapeutic approach is coronary angioplastic intervention or thrombolytic treatments to resume blood flow in the ischaemic heart. Unfortunately, reperfusion itself causes a burst of ROS production responsible for cardiomyocyte death and myocardial dysfunction. Indeed, the majority of patients surviving to acute myocardial infarction undergoes progressive heart failure, with 50% mortality at five years from diagnosis. Apoptosis of cardiomyocytes is dangerous both during ischaemia and reperfusion. In line with this concept, we have shown that treatment of H9c2 cardiomyoblasts with cobalt chloride (CoCl2), a chemical mimetic of hypoxia, induces caspase-dependent apoptosis. Unexpectedly, we found that 3-methyladenine, an inhibitor of autophagy initiation, partially prevents CoCl2-mediated cell death, indicating that also autophagy contributes to cardiomyoblast death. Consistently, we found an increase in the autophagic flux in dying cells. Mechanistically, we have shown that CoCl2 upregulates Redd1, Bnip3 and phospho-AMPK proteins and causes inhibition of mTOR, the main negative regulator of autophagy.  In light of these observations, it is important to discover new therapeutic tools displaying a dual prosurvival mechanism. To this aim, we have analyzed the cardioprotective action of HGF/Met axis in hypoxic injury. To activate Met signaling we have used either the HGF ligand or two different monoclonal antibodies (mAbs) directed against the extracellular moiety of Met receptor. Owing a divalent structure, the two mAbs can dimerize and activate Met receptor, thus displaying agonist activity. Hypoxic injury was fully prevented by either HGF or Met agonist mAbs through both anti-apoptotic and anti-autophagic functions. By pharmacological inhibition we showed that activation of mTOR is the protective signaling downstream to Met, being involved in the anti-autophagic effect. In conclusion, HGF or Met agonist mAbs promote cell survival by negative dual regulation of apoptotic and autophagic cell death and represent promising new therapeutic tools to manage cardiac diseases

    Can the development and autolysis of lactic acid bacteria influence the cheese volatile fraction? The case of Grana Padano

    Get PDF
    In this study, the relationship between the dynamics of the growth and lysis of lactic acid bacteria in Grana Padano cheese and the formation of the volatile flavor compounds during cheese ripening was investigated. The microbial dynamics of Grana Padano cheeses thatwere produced in two different dairies were followed during ripening. The total and cultivable lactic microflora, community composition as determined by length heterogeneity- PCR (LH-PCR), and extent of bacterial lysis using an intracellular enzymatic activity assaywere compared among cheeses after 2, 6 and 13 months of ripening in two dairies. The evolution of whole and lysed microbiota was different between the two dairies. In dairy 2, the number of total cells was higher than that in dairy 1 in all samples, and the number of cells that lysed during ripening was lower. In addition, at the beginning of ripening (2 months), the community structure of the cheese from dairy 2 was more complex and was composed of starter lactic acid bacteria (Lactobacillus helveticus and Lactobacillus delbrueckii) and NSLAB, possibly arising fromraw milk, including Lactobacillus rhamnosus/Lactobacillus casei and Pediococcus acidilactici. On the other hand, the cheese from dairy 1 that ripened for 2 months was mainly composed of the SLAB L. helveticus and L. delbrueckii. An evaluation of the free-DNA fraction through LH-PCR identified those species that had a high degree of lysis. Data on the dynamics of bacterial growth and lysis were evaluated with respect to the volatile profile and the organic acid content of the two cheeses after 13 months of ripening, producing very different results. Cheese from dairy 1 showed a higher content of free fatty acids, particularly those deriving from milk fat lipolysis, benzaldehyde and organic acids, such as pGlu and citric. In contrast, cheese from dairy 2 had a greater amount of ketones, alcohols, hydrocarbons, acetic acid and propionic acid. Based on these results, we can conclude that in the first cheese, the intracellular enzymes thatwere released fromlysiswere mainly involved in aromaformation,whereas in the second cheese, the greater complexity of volatile compounds may be associated with its more complex microbial composition caused from SLAB lysis and NSLAB (mainly L. rhamnosus/L. casei) growth during ripening

    Peri-operative complications of video-assisted thoracoscopic surgery (VATS)

    Get PDF
    AbstractVideo-assisted thoracoscopic surgery (VATS) has multiple indications for diagnosis and treatment of many different thoracic diseases; the commonest are lung wedge resection, pleural and mediastinal biopsy, treatment of pneumothorax, and pleurectomy. Moreover, in recent years a few surgeons have performed routinely major lung anatomic resections by VATS approach, including segmentectomy, lobectomy and pneumonectomy.In our experience VATS constitutes about one-third of all thoracic surgical procedures. In the reviewed literature as in the most frequent complications after VATS procedures are: prolonged air leak, bleeding, infection, postoperative pain, port site recurrence and the need to convert the access in thoracotomy. The complication and mortality rates are generally very low and VATS procedures are considered safe and effective.It is recommended that all thoracic surgery departments audit their VATS procedures for peri-operative morbidity and mortality to compare results and outcomes

    A New Transgenic Mouse Model of Heart Failure and Cardiac Cachexia Raised by Sustained Activation of Met Tyrosine Kinase in the Heart

    Get PDF
    Among other diseases characterized by the onset of cachexia, congestive heart failure takes a place of relevance, considering the high prevalence of this pathology in most European countries and in the United States, and is undergoing a rapid increase in developing countries. Actually, only few models of cardiac cachexia exist. Difficulties in the recruitment and follow-up of clinical trials implicate that new reproducible and well-characterized animal models are pivotal in developing therapeutic strategies for cachexia. We generated a new model of cardiac cachexia: a transgenic mouse expressing Tpr-Met receptor, the activated form of c-Met receptor of hepatocyte growth factor, specifically in the heart. We showed that the cardiac-specific induction of Tpr-Met raises a cardiac hypertrophic remodelling, which progresses into concentric hypertrophy with concomitant increase in Gdf15 mRNA levels. Hypertrophy progresses to congestive heart failure with preserved ejection fraction, characterized by reduced body weight gain and food intake and skeletal muscle wasting. Prevention trial by suppressing Tpr-Met showed that loss of body weight could be prevented. Skeletal muscle wasting was also associated with altered gene expression profiling. We propose transgenic Tpr-Met mice as a new model of cardiac cachexia, which will constitute a powerful tool to understand such complex pathology and test new drugs/approaches at the preclinical level
    corecore