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(miRNAs as disease biomarkers) and miR-drugs (miRNAs 
as therapeutic targets) for cardiac ischemia and heart fail-
ure. Finally, we evaluate the use of miRNAs in the emerg-
ing field of regenerative medicine.
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Introduction

The impact of ischemic heart disease

Human heart disease remains the main cause of death and 
disability in children and adults in the developed coun-
tries. According to the American Heart Association [1], in 
every year since 1900 (except 1918) cardiovascular disease 
(CvD) accounted for more deaths than any other single 
cause in the United States, including cancer, chronic lower 
respiratory diseases, accidents, and diabetes mellitus. An 
expected 80,000,000 American adults (1 in 3) have one or 
more types of CvD. Among these, 7,900,000 are estimated 
to have an acute myocardial infarction (MI) [1]. This num-
ber keeps increasing despite the emphasis placed on pre-
vention and new therapeutic agents, rendering heart disease 
the health epidemic of the twenty-first century.

Ischemic heart disease is the most common underly-
ing cause of heart failure. Myocardial ischemia may arise 
from several aetiologies, the most prevalent being coro-
nary artery disease (CAD). Coronary artery disease causes 
severe impairment of the coronary blood supply and may 
lead to MI and heart failure. Resumption of blood flow in 
ischemic tissues, by coronary angioplasty or thrombolytic 
treatments, is currently recommended for the immediate 
early approach to acute MI. Reperfusion can clearly limit 
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the extent of cardiomyocyte loss. However, the resupply 
of blood may give rise to mitochondrial reactive oxygen 
species (ROS) and mitochondrial Ca2+ accumulation and 
finally elicit apoptotic pathways [2–4].

The complexity of microRNAs (miRNAs) biology

The pathogenesis of heart disease is often associated with 
the altered expression of pivotal specific genes [5]. A num-
ber of transcriptome studies have been applied to CvD, 
with the aim of improving diagnosis, prognosis, and thera-
peutic assessment [5–7]. Myocardial biopsies of patients 
suffering from acute/chronic myocardial ischemia, as well 
as animal models of ischemia and reperfusion (I/R), have 
revealed changes in gene expression which seem to be spe-
cific for the cardiac ischemic injury [8–10]. MicroRNAs 
(miRNAs) are important regulators of gene expression, 
constituting a major area of investigation in cardiovascu-
lar research [11]. MicroRNAs are a class of endogenous, 
non-coding RNA molecules of approximately 21 nucleo-
tides, which result from sequential processing of primary 
transcripts mediated by the RNase III enzymes, Drosha and 
Dicer. They post-transcriptionally regulate gene expres-
sion by means of an imperfect complementarity to the 3’ 
untranslated region of target mRNAs. The most stringent 
requirement for specifically targeting mRNAs is a contigu-
ous and perfect base-pairing of the miRNA’s nucleotides 
2–8 (seed sequence), which nucleates the interaction with 
the target messenger. MicroRNAs can regulate mRNA 
translation at the initiation, elongation, and termina-
tion process, or can affect mRNA stability. In eukaryotes, 
mRNA enzymatic degradation can follow two pathways, 
each of which is initiated by shortening of the mRNA 
poly-A tail [12]. Proteolytic cleavage of nascent polypep-
tides has also been described [13]. MicroRNAs may also 
act through mechanisms which go beyond complementa-
rity. Indeed, theycan regulate pre-mRNA processing in the 
nucleus, act as chaperones to modify structure, or modu-
late mRNA-protein interactions [13]. while miRNAs gen-
erally function in the cytoplasm, they can be imported in 
the nucleus [14], in the mitochondrium [15], and even be 
secreted from the cell [16] or transferred from one cell to 
another [17, 18]. Nevertheless, the relevance of subcellular 
localization for miRNA regulation is still a matter of study 
[19].

Currently, the estimated number of miRNA genes is as 
high as ~1,500 in the human genome (1–3 % of known 
genes are represented by miRNAs) and about 750 in the 
mouse [20], and they are supposed to regulate about 10,000 
target genes (excluding alternative splicing variants), which 
is 30 % of the coding genes [21]. Indeed, each miRNA is 
assumed to regulate tens to thousands of targets. Moreover, 
they most likely act as an ensemble (often synergistically). 

Indeed, “miRNAs working together” interact at the level 
of single targets, set of target genes, and complex systems 
[22]. Critically, miRNAs often attenuate the expression 
of their targets only moderately [23]. The network which 
derives is quite complex and many pieces in unravelling 
miRNAs biology are missing. Therefore, it is not surprising 
that the picture of miRNA regulation is still highly frag-
mented and sometimes incoherent, due to gaps in untan-
gling the coordinated action of such a number of molecules 
[13].

MicroRNAs in cardiovascular disease

Since miRNAs have proved to be key regulators of cardio-
vascular development [24], misregulation of miRNA func-
tion is likely to be involved in the onset of many human 
diseases, including CvD [25–28]. Since the initial impli-
cation of miRNAs in controlling heart development [29] 
and the identification of the pathological role of miRNAs 
during cardiac hypertrophy and failure [30–32], more than 
800 articles have been published examining miRNAs in the 
heart (more than 400 in 2012 alone). Recent studies have 
compared mRNA and miRNA expression profiles in the 
same myocardial samples obtained from patients suffering 
from heart failure, with or without mechanical left ventric-
ular assist device (LvAD) support. In contrast to mRNA, 
which varied moderately between the two groups, a spe-
cific set of miRNAs was significantly upregulated in heart 
failure and returned to normal in the LvAD recovery group 
[33, 34]. These findings suggest that miRNAs expression 
reflects the functional status of the heart more accurately 
than mRNAs.

In this review, we will briefly introduce muscle-specific 
miRNAs and describe the interplay occurring between 
miRNAs and their targets. Then, we will focus on miRNA 
regulation in cardiac ischemia. we will illustrate the role 
played by specific miRNAs in the different pathological 
aspects of myocardial ischemia: cardiomyocyte cell death, 
fibrosis, neovascularization, and heart failure. we will 
focus on the possible use of specific miRNAs as diagnos-
tic and prognostic biomarkers and as new potential targets/
tools for the treatment of heart disease. Finally, we will dis-
cuss the potential of miRNAs in the key promising field of 
regenerative medicine.

Feedback loops in the regulation of myomiRs

The myomiRs are a subset of miRNAs highly enriched in 
cardiac and/or skeletal muscle [35]. They include miR-
1, miR-133, miR-206 (present only in skeletal muscle), 
miR-208, miR-486, and miR-499 [36–38]. Several of 
these miRNAs are organized in bicistronic clusters on the 
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same chromosome (i.e. miR-1 and miR-133) and are tran-
scribed together [35]. Myogenic regulatory factors bind 
to upstream sequences and promote the transcription of 
these myomiRs in skeletal (MyoD, Myogenin) and cardiac 
(Mef2, Srf) tissues. The myomiRs, in turn, affect multiple 
developmental and functional aspects in both muscle and 
heart through the post-transcriptional regulation of genes 
controlling myogenesis [29, 39].

MyomiRs and myogenic factors are linked by reciprocal 
interactions, often based on the onset of feedback circuits. 
For example, a feedforward loop is established in skeletal 
muscle cells, where miR-1 derepresses the activity of Mef2 
through suppression of Hdac4. Activated Mef2, in turn, 
induces the expression of miR-1 [39]. Mef2 is also regu-
lated by miR-494. In myoblasts, miR-494 directly regulates 
mtTfa and Foxj3, which are upstream to Mef2. Mef2 pro-
motes the expression of mitochondrial proteins that, in turn, 
induce mtTfa [40]. Intriguingly, the presence of several 
myomiRs translocated from the cytosol to mitochondria 
has been demonstrated in human skeletal muscle cells [15]. 
Among these, miR-133 was predicted to target the mito-
chondrial NADH dehydrogenase subunit 1 and was impli-
cated in mitochondrial mRNA silencing [15]. The key role 
of miR-133 is further supported by the switch-off mecha-
nisms regulating its expression. In cardiac muscle cells, Srf 
regulates the expression of many miRNAs, including miR-
133 [29], which in turn represses expression of Srf [35, 41]. 
The tight modulation of forces driven by miR-1 and miR-
133 finally contributes to the balance between proliferation 
and differentiation in muscles [39].

Feedback regulatory loops also exist between myomiRs 
and intracellular signaling pathways. MiR-1 and miR-378 
are two representative examples. In fact, both the Met 
receptor and its ligand Hgf were identified as candidate 
targets of miR-1 [42]. Notably, Met is also downregulated 
by miR15b [43]. A reciprocal interplay between miR-1 and 
Met has been shown (in cancer), since miR-1 downregula-
tion results in Met overexpression and, in turn, Met nega-
tively controls miR-1 expression [44]. we have recently 
demonstrated the involvement of Met signaling in cardiac 
hypertrophy [45], and the importance of Hgf/Met axis in 
the response to MI is well documented [46]. It is there-
fore likely that a negative feedback loop is also established 
between miR-1 and Met in myocardial disease, constitut-
ing a circuit of potential therapeutic interest. Moreover, 
miR-1 targets Igf1 and Igf1 receptor (Igf1R). In turn, the 
Igf1 pathway downregulates miR-1 expression through the 
inhibitory phosphorylation, mediated by Akt, of Foxo3a, 
which directly acts on miR-1 promoter [47]. Through an 
analogous reciprocal control, miR-378 expression is inhib-
ited by Igf1 in cardiomyocytes [48].

The comprehension of the role and regulation of miR-
NAs during cardiac development, as well as in pathological 

conditions in the adult, constitutes the basis for new tar-
geted therapies for cardiac disease.

MicroRNAs in the attenuation of myocardial injury

The oxygen deprivation and ROS production which fol-
low cardiac ischemia and I/R cause cardiomyocyte cell 
death via both apoptosis and necrosis. Subsequently, car-
diac fibroblasts infiltrate the damaged tissue to increase the 
myocardial tensile strength by deposition of extracellular 
matrix. Finally, new blood vessels are formed in the border 
zone, resulting in partial restoration of blood supply. If the 
mechanisms aimed at attenuating injury are not sufficient, 
ultimately heart failure supervenes. In the following para-
graphs, the most interesting results on the role/regulation of 
miRNAs in these processes are reported and discussed in 
the view of possible therapeutic exploitations.

Cardiomyocyte cell death: apoptosis and necrosis

Ischemia and reperfusion are powerful inducers of cell 
death programs [49, 50]. The critical role of cardiac myo-
cytes death in the progression towards cardiac dilation 
and heart failure indicates that improvement of myocyte 
survival could represent an important therapeutic strategy. 
very few studies involve miRNAs in the autophagic death, 
in particular during I/R [51]. On the contrary, a large body 
of work suggests a role for miRNAs in the regulation of 
apoptosis (Fig. 1a). Intriguingly, miRNAs also regulate 
necrotic cell death.

A number of miRNAs exert an antiapoptotic function by 
targeting important proapoptotic proteins (Fig. 1a). miR-
499 and miR-30 family members diminish apoptosis in the 
injured heart by attenuating activation of dynamin-related 
protein-1 (Drp1) and thus inhibiting mitochondrial fission 
[52, 53]. Similarly, miR-24 and miR-21 inhibit cardiomyo-
cyte apoptosis [54, 55], via the repression of the proapop-
totic proteins Bim [54, 56] and programmed cell death 4 
(Pdcd4) [57, 58]. Interestingly, ex vivo miR-24 enrichment, 
together with miR-21 and miR-221, improves the therapeu-
tic potential of cardiacprogenitor cells upon transplantation 
in ischemic rodents [59]. Suppression of miR-24 increases 
cardiomyocytes apoptosis [60]. Nevertheless, miR-24 inhi-
bition is beneficial for angiogenesis (see below), raising 
some concerns about its therapeutic use. Notably, miR-24 
and miR-21 were shown to also reduce the rates of necro-
sis in ischemic cardiomyocyte cultures [56, 57]. Another 
important antiapoptotic miRNA is miR-210, which is con-
sidered the master hypoxamiR [61, 62]. In hypoxic cardio-
myocytes, miR-210 is upregulated by p53 in a Hif-depend-
ent, and by Akt in a Hif-independent way [63]. Increased 
survival of cardiomyocytes and of heart-engrafted bone 
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marrow-derived stem cells in the ischemic myocardium 
is promoted by miR 210 by targeting, respectively, Ptp1b 
and caspase-8-associated protein 2 [64, 65]. Furthermore, 
miR-210 regulates mitochondrial metabolism by targeting 
crucial proteins of the electron transport chain, at least in 
cancer cells [66–68]. miR-210 may also have a previously 
unrecognized role in the metabolic adaptation to hypoxic 
conditions in the infarcted myocardium.

On the other hand, a number of miRNAs have been 
shown to exert proapoptotic effects by targeting key cardio-
protective proteins (Fig. 1a), like, for example, heat-shock 
protein 20 (Hsp20), which is the target of miR-320 [69]. 
Among others, miR-34 family members promote growth 
arrest and apoptosis [70]. Indeed, therapeutic inhibition 
of miR-34 attenuates ischemia-induced remodeling and 
improves cardiac recovery [71]. A protein phosphatase 1 
nuclear targeting subunit (Pnuts) was identified as a novel 
miR-34 target [72].

Bcl2 family is a major hub on which multiple signals 
converge. Indeed, the proapoptotic miR-29 targets Mcl-1, 
a Bcl2 family-member [73]. In addition, targeting miR-15 
family members renders cultured cardiomyocytes resist-
ant to hypoxic death and ameliorates cardiac response 
to myocardial ischemia by inhibiting repression of Bcl2 
[74]. Finally, Bcl2, together with Hsp60 and Hsp70, is 
also the target of miR-1, which is upregulated in response 
to ischemic injury in vivo [75–77]. Akt signaling emerges 
as a further central node for improving cardioprotection 
against apoptosis and necrosis in myocardial ischemia and 
I/R. miR-1 as well as miR-378 both target the antiapoptotic 

IGF1 pathway [47, 48, 75] and are therefore involved in 
the apoptotic cell death induced by cardiac ischemia. How-
ever, the overexpression of miR-378 attenuates both apop-
tosis and necrosis in hypoxic cardiomyocytes by inhibiting 
caspase 3 [78]. Like miR-378, miR-494 lies at the edge 
between pro- and anti-apoptotic miRNAs, ultimately tilting 
the balance in favor of the activation of Akt [79].

Fibroblast proliferation and activation: fibrosis

Interstitial fibrosis is a major aspect of myocardial remod-
eling following MI, which contributes to loss of contrac-
tility and function. The extracellular deposition of collagen 
by fibroblasts contributes to this adverse remodeling after 
MI. Therefore, inhibiting fibroblasts proliferation, differen-
tiation, and secretion of matrix proteins may be clinically 
relevant for the prevention and treatment of heart failure 
after MI. Specific antifibrotic drugs are not currently avail-
able. Therefore, efforts should be focused on exploring new 
possible therapeutic targets.

Interestingly, an anti-miR-21 was shown to prevent 
myocardial fibrosis in a model of pressure overload [80]. 
Indeed, miR-21 represses the expression of Sprouty, a neg-
ative regulator of Mapk, thus enhancing proliferation of 
fibroblasts [80, 81] (Fig. 1b). Moreover, miR-21-dependent 
targeting of sprouty homolog 1 (Spry1) and Pdcd4 was 
shown to promote the fibroblastoid phenotype in epicardial 
mesothelial cells undergoing epithelial-to-mesenchymal 
transition [82]. Moreover, phosphatase and tensin homo-
logue (Pten) is a direct target of miR-21 [83] in cardiac 

Fig. 1  Target mRNAs and 
functional role of miRNAs 
related to myocardial ischemia 
in cardiomyocytes (a), fibro-
blasts (b), and endothelial cells 
(c). Arrows and bars at the end 
of the lines indicate whether 
the target is activated (arrow) 
or inhibited (bar). Dotted 
pink- and light blue-shaded 
regions indicate, respectively, 
stimulation or repression of a 
process (apoptosis, fibrosis, and 
angiogenesis) in myocardial 
ischemia
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fibroblasts. Pten upregulates the expression of matrix met-
alloproteinase 2 (Mmp2), promoting fibrosis in the 
infarcted heart. However, opposite results were obtained by 
Olson’s group [84], leaving still debated whether targeting 
miR-21 in the heart may be beneficial for the treatment of 
myocardial ischemia and infarction.

On the other hand, miR-133, miR-1, miR-30, and miR29 
family members directly (or indirectly in the case of miR-
711, which targets Sp1) downregulate key profibrotic pro-
teins [85–88] (Fig. 1b). In particular, miR-29 family mem-
bers are downregulated in the infarct area [86] and during 
collagen accumulation upon experimental fibrosis [89], 
while elevated miR-29 levels and repressed collagen syn-
thesis follow stimulation with HGF [90], a powerful antifi-
brotic factor [46]. However, the proapoptotic effect exerted 
by miR-29 on cardiomyocytes generates an important criti-
cism in the therapeutic use of miR-29 to reduce fibrosis in 
MI.

A major pathway implicated in cardiac fibrosis involves 
Tgf-β, which induces fibroblasts to synthesize and contract 
extracellular matrix. MicroRNAs targeting the Tgf-β path-
way may offer a therapeutic tool to interfere with fibrosis 
following MI. In this respect, miR-21 has been proposed as 
a regulator of Tgf-β pathway. while inducing the prolifera-
tion of fibroblasts, miR-21 simultaneously increases matrix 
deposition. Notably, miR-21 itself is upregulated by Tgf-β 
[91]. Also, miR-24 and miR-101 have been suggested to 
influence Tgf-β pathway. Upregulation of miR-24, which is 
downregulated in MI heart, can reduce fibrosis by decreas-
ing differentiation and migration of cardiac fibroblasts 
through the control of Tgf-β activation [92]. Overexpres-
sion of miR-101 suppresses both proliferation and collagen 
deposition in cardiac fibroblasts, resulting in inhibited post-
infarct cardiac fibrosis and improved cardiac function in 
vivo, by targeting the Tgf-β pathway [93].

endothelial cells proliferation and migration: 
neovascularization

Neoangiogenesis mainly occurs in the MI border zone to 
sustain cardiomyocytes survival and repair with oxygen 
and nutrients. A number of miRNAs are involved in vas-
cular biology [94]. The most convincing evidence for the 
participation of miRNAs in the angiogenic response to 
myocardial ischemia concerns the proangiogenic miR-126, 
miR-1, and miR-210, and the antiangiogenic miR-92a, 
miR-24, and miR-214 (Fig. 1c).

MiR-126 is upregulated in the border zone of MI [95]. 
Consistently, neovascularization after MI is inhibited in 
miR-126 knockout mice [95]. The proangiogenic effect of 
miR-126 following myocardial infarction has been attrib-
uted to the repression of Spred-1 [95], an intracellular 
negative regulator of Mapks (Fig. 1c). Targeting of Spred1 

leads to the increase in vascular endothelial growth factor 
(vegf), favoring proliferation and migration of endothelial 
cells. Notably, miR-1 has also been recently shown to target 
Spred-1 [96], thus suggesting that the activation of Mapks 
in endothelial cells is a hub for the convergence of proan-
giogenic miRNA stimuli. Mesenchymal stem cells [97, 98] 
and endothelial progenitors [99] transduced with miR-126 
have been proposed as a novel therapeutic approach for 
the improvement of post-ischemic angiogenesis. Finally, 
intramyocardial injection of a non-viral vector minicircle 
DNA carrying the miR-210 precursor reduces infarct size 
by enhancing angiogenesis [64], through the downregula-
tion of ephrin-A3 (efna3) [62]. Thus, delivery of proan-
giogenic miR-126 and miR-210 might be considered as a 
therapeutic approach in ischemic heart disease.

Conversely, miR-92a, miR-24 and miR-214 suppress 
neovascularization in myocardial infarction by inhibition of 
proangiogenic proteins, such as α5 integrin (Itga5) [100], 
Gata2 and Pak4 [101], and Quacking [102], respectively 
(Fig. 1c). Accordingly, blocking of miR-24 limits myocar-
dial infarct size in mice [101] and increases angiogenesis 
and blood perfusion in the peri-infarct myocardium, by 
prompting endothelial cells survival, proliferation, and net-
working in capillary-like tubes [60].

Other miRNAs, such as miR-130, miR-320, miR-
221/222, miR-296, and miR-378 have been shown to 
regulate physiological vascular function and tumor angio-
genesis [36]. However, a function in the regulation of angi-
ogenesis in cardiac ischemia has not yet been investigated.

MicroRNAs in heart failure

Ischemic cardiomyopathy is a common cause of conges-
tive heart failure. In hypoxic conditions, the heart reacti-
vates a fetal gene program, involving extensive remodeling, 
decreased aerobic metabolism, and increased cardiac effi-
ciency. Among others, the fetal isoform of myosin heavy 
chain (β-MHC) and the natriuretic factor genes are invari-
ably upregulated in the failing heart. However, this adap-
tive response is the first step of the subsequent heart failure. 
A subset of miRNAs which are up- and downregulated in 
experimental heart failure [31] are also modulated in failing 
human hearts [31, 103–106]. A number of miRNAs have 
been shown to be either upregulated (miR-21, miR-29b, 
miR-129, miR-210, miR-211, miR-212, miR-423, miR-199 
family, miR-379, miR-503, and miR34b and c) or down-
regulated (miR-30, miR-182, and miR-526) [106, 107]. 
Consistent with the reexpression of the fetal gene program, 
a high degree of similarity was found between the miRNA 
expression patterns occurring in human failing hearts and 
those observed in human fetal hearts, thus indicating that a 
fetal miRNA program is also reactivated by cardiac stress 
[106].
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Besides reactivation of fetal miRNAs and genes, 
impaired Ca2+ homeostasis is a hallmark of failing hearts. 
Myocardial sarcoplasmic reticulum Ca2+ ATPase 2a (SeR-
CA2a) is downregulated in heart failure and SeRCA2a 
gene therapy improves cardiac function in both animals 
and patients [108]. Intriguingly, miR-1 is downregulated in 
heart failure and SeRCA2a gene therapy is able to restore 
miR-1 expression in heart failure via an Akt/Foxo3a-
dependent pathway [109]. Notably, in the adult heart, both 
miR-1 and miR-133, which are in the same bicistronic unit, 
display an anti-hypertrophic activity [110, 111]. These 
data might encourage the use of miR-1 for treating myo-
cardial ischemia; however, the negative effects exerted on 
cardiomyocytes survival might hamper any other beneficial 
effect.

The abnormal increase in intracellular Ca2+ observed 
during myocardial reperfusion is a major concern. In fact, 
it is thought to be the cause of cardiomyocyte death and 
consequent loss of cardiac function, leading to heart fail-
ure. Indeed, therapeutic miRNA-mediated modulation of 
Ca2+ handling may provide some cardioprotection against 
the paradoxical effects of reperfusion. In this respect, it 
was shown that miR-214 is upregulated during ischemic 
injury and heart failure [112], and that genetic deletion of 
miR-214 in mice worsens the heart response to I/R. The 
cardioprotective role of miR-214 during I/R injury is most 
likely due to the repression of sodium/calcium exchanger 
1, a key regulator of Ca2+ influx, and to the repression of 
downstream apoptotic and necrotic effectors of Ca2+ sign-
aling [112]. Among these, CaMKIIδ is a common target of 
both miR-214 and miR-145 [113]. MiR-145 concomitantly 
protects cardiomyocytes from ROS by targeting Bnip3 
[114]. Boosting miR-214 and miR-145 levels to attenuate 
Ca2+ overload and cardiac cell death may provide a valu-
able therapeutic benefit for the treatment or prevention of 
heart failure after I/R injury. However, some caution must 
be adopted, due to the antiangiogenic effects of miR-214, 
which reduces sprouting of endothelial cells by targeting 
Quacking [115].

Future directions for therapy

miR-diagnosis and miR-drugs

The discovery of specific miRNAs as important regulators 
of the cardiac response to ischemia has opened new per-
spectives for clinical research. Recent results obtained in 
cancer suggest that the profiles of blood circulating miR-
NAs might mirror the changes observed in the cancerous 
tissue [116]. This concept has also proved valid in heart 
failure [117], and the significance of circulating miRNAs 
in comparison to conventional biomarkers has just begun 

to be investigated in the cardiovascular field [118, 119]. 
Circulating cardiac miRNAs are indeed released as a spe-
cific response to myocardial injury and can be used in the 
diagnosis of MI [120–124]. Recently, it was discovered that 
most of the extracellular miRNAs circulate in the blood of 
both healthy and diseased patients as secretory molecules, 
contained in apoptotic bodies, microvesicles, and exosomes 
or bound to RNA-binding proteins [16]. New challenges 
for miRNA biology include unraveling the secretory mech-
anism, as well as the significance and biological function 
of extracellular miRNAs. Moreover, large sample sizes are 
required to give an accurate estimate of the diagnostic and 
prognostic utility of miRNAs as CvD biomarkers. New 
frontiers are expected to be delineated for miR-diagnosis.

As important regulators of heart function, miRNAs rep-
resent attractive targets/tools for treating heart disease with 
miR drugs [125–131]. The momentum in miRNA field is 
hyped by the large investment announced by the Colorado-
based Miragen, which will initially focus on identifying 
targets related to CvD, primarily heart failure. A number 
of in vivo pre-clinical studies have been conducted using 
anti-miRNAs strategies, such as antagomiRs, 2’O-methyl-
modified cholesterol-conjugated single-strand RNA oligos 
with perfect complementarity to target miRNAs. Treatment 
with antagomiRs in mice has been used to prove the role 
of specific miRNAs in determined phenotypes [69, 111]. 
For example, a miR-21-directed antagomiR has been used 
to prevent myocardial fibrosis after pressure overload [80]. 
It must be noted that miR-21 is expressed in a broad array 
of tissues, including the vasculature, thus making the dis-
crimination between primary and secondary cardiac effects 
induced by intravenous injection of the antagomiR difficult. 
The use of highly tissue-specific adeno-associated viral 
vectors should be taken into account in order to improve 
delivery and specificity. In this perspective, AAv9 might 
represent the best choice for cardiac interventions [132]. 
Mimics of angiomiRs (or antagomiRs of anti-angiomiRs) 
might also be used to improve neoangiogenesis in cardiac 
ischemia [64, 95].

Another intriguing therapeutic approach might be the 
use of miRNAs in preconditioning. Indeed, it is possible 
to stimulate the intrinsic resistance to hypoxia through 
repeated short episodes of ischemia. During normoxia, 
Hif1α is targeted by miR-199a, while, during hypoxia, 
miR-199a is downregulated (by a still undefined post-tran-
scriptional mechanism), thus contributing to the expression 
of Hif1α [133]. The therapeutic knockdown of miR-199a 
during normoxia might therefore be used to mirror hypoxic 
preconditioning and protect cardiomyocytes against sub-
sequent hypoxic damage, as suggested by recent results 
[134].

The drugs which are typically administered to treat heart 
failure mostly aim at reducing blood pressure and improve 
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heart pumping. The rapid advancement in the identification 
of new miRNAs associated with heart failure will certainly 
increase our arsenal for the treatment of such a threatening 
disease.

MicroRNAs and regenerative applications

Regeneration of an injured heart can be carried out by 
new muscle cells coming from two sources: replication of 
preexisting cardiomyocytes and expansion, followed by 
proper differentiation of stem cells or precursors (resident 
or injected). The field of regenerative medicine is expand-
ing. The exploitation of miRNAs to this purpose is a certain 
target for future research.

Reactivation of cardiomyocytes proliferation

In mammals, the transition from the proliferative to the 
hypertrophic phenotype is strictly regulated [135]. In the 
neonate, 3–15 % of the cardiomyocytes are still cycling 
[136–138]. However, cardiomyocyte proliferation declines 
after birth [139]. After cardiac injury, a low level of cardio-
myocyte replication occurs, suggestive of a partial attempt 
of the myocardium to regenerate [140–143]. Nevertheless, 
the proliferative capacity of adult cardiomyocytes is limited 
and insufficient to replace the ≈1 billion cardiomyocytes 
typically lost in MI. Recent studies have provided evidence 
for supporting therapeutic reactivation of cardiomyocyte 
proliferation by means of miRNAs.

MiR-15 family has an important role in governing car-
diomyocyte cell cycle withdrawal. During neonatal devel-
opment, miR-15 family is upregulated in the heart, in 
concomitance with the irreversible exit of cardiomyocytes 
from the cell cycle [144]. Consistently, post-natal knock-
down of miR-15 family members through in vivo delivery 
of anti-miR oligonucleotides has been associated with an 
increased number of mitotic cardiomyocytes [144]. Moreo-
ver, overexpression of miR-195 (member of miR-15 fam-
ily) in the neonatal heart reduced the regenerative potential 
after myocardial ischemia [145].

Also, the depletion of miR-133 (which has an impor-
tant role in the proliferation and differentiation of cardiac 
progenitors during cardiomyogenesis [29, 146]), enhances 
the cardiac regenerative responses in zebrafish cardio-
myocytes after injury [147]. Indeed, cardiac regeneration 
in zebrafish, albeit unclear, appears to be at least partially 
based on cardiomyocyte proliferation [148–150]. In con-
trast, transgenic overexpression of miR-17-92 in cardio-
myocytes is sufficient to induce cardiomyocyte prolifera-
tion in embryonic, post-natal, and adult hearts. Moreover, 
overexpression of miR-17-92 in adult cardiomyocytes 
protects the heart from myocardial infarction-induced 
injury [151].

The recent publication from eulalio et al. [152] pro-
duced excitement and open questions [153, 154]. Giacca’s 
group has shown that hsa-miR-590 and hsa-miR-199a can 
trigger cell cycle reentry of adult cardiomyocytes ex vivo 
and promote cardiomyocyte proliferation in both neonatal 
and adult animals. when these miRNAs are administered to 
ischemic hearts, they induce the replication of cardiomyo-
cytes and stimulate repair of damage through the formation 
of new heart cells [152].

These observations hint at the possibility of identifying 
and targeting the molecular regulators that maintain cardio-
myocytes in the quiescent state after injury. However, care 
must be taken in forcing cell cycle progression in cardio-
myocytes, since these may undergo hypertrophy or apopto-
sis, both detrimental to cardiac function [139, 155]. Thus, 
therapeutic strategies aimed at stimulating cardiomyocyte 
proliferation should require the concomitant expression 
of cell cycle regulators and cardioprotective molecules to 
ensure full activation of the cell cycle and protection from 
apoptosis. In this sense, the peculiar capacity of miRNAs to 
exert multiple coordinate effects represents a clear advan-
tage in preventing catastrophic mitosis.

Stimulation of cardiac progenitors

The identification of cardiac cells with stem cell properties 
changed the paradigm of the heart as a post-mitotic organ 
[156–158]. These cells proliferate and differentiate into 
cardiomyocytes and endothelial and vascular smooth mus-
cle cells, providing for cardiac homeostasis and regenera-
tion. However, the regenerative potential of resident cardiac 
progenitors is limited. Some recent reviews extensively 
explored the possibility of manipulating this regenera-
tive potential by the use of miRNAs [153, 154, 159, 160]. 
Indeed, miRNAs act as regulators of proliferation and dif-
ferentiation of adult cardiac stem cells and progenitors [39, 
161–164].

The use of exogenous stem cells for cellular therapy 
constitutes a major avenue of investigation [158]. The 
potential of miRNAs in stimulating expansion and differen-
tiation of embryonic and induced pluripotent stem cells has 
been reviewed extensively elsewhere [153]. Survival and 
functional integration of transplanted cells as well as their 
proper differentiation are major concerns to improve car-
diac function. Indeed, one of the major hurdles to achieve 
long-term improvement of heart function through stem cell 
therapies is the low survival rate of the injected stem cells 
in the hostile environment of the damaged myocardium. A 
miRNA cocktail has recently been shown to increase via-
bility of transplanted cells in the infarcted heart by target-
ing Bim and, thus, induce better recovery [59].

An important regulator of cardiac progenitor cells 
(CPCs) differentiation is miR-499. Although barely 
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detectable in undifferentiated precursors, it is strongly 
induced in post-mitotic cardiomyocytes. In human CPCs, 
miR-499 enhances cardiogenesis by repressing Sox6 and 
Rod1. Importantly, CPCs overexpressing miR-499 have 
increased potential to regenerate the damaged myocardium 
in an animal model of myocardial infarction [17].

Notably, miRNAs can act as paracrine messengers. For 
example, miR-499 has been shown to traverse gap junc-
tion channels and translocate to structurally coupled CPCs 
favoring their differentiation into functionally competent 
cells [17]. An inverse flux of miR-210 from transplanted 
stem cells of mesenchymal origin to host cardiomyocytes 
has been shown to functionally recover the ischemic heart, 
meanwhile promoting post-engraftment survival [18].

Conclusions and take‑away message

Many miRNAs have been implicated in the control of car-
diac apoptosis, fibrosis, and neovascularization following 
myocardial ischemia and I/R injury and in the adaptation of 
the heart to damage. Therefore, analyzing (miR-diagnosis) 
and manipulating (miR-drugs) miRNA biology represents 
an attractive, albeit ambitious, approach for diagnosis and 
therapeutics. Moreover, new evidence supports a role for 
miRNAs in the induction of proliferation of cardiomyocytes 
and improvement of survival, renewal, and differentiation 
of precursor and stem cells. One major advantage in using 
miRNAs is certainly the possibility to simultaneously target 
multiple proteins and even entire pathogenic pathways. The 
main problem is to globally obtain a coherent and benefi-
cial effect. Indeed, in some cases, this huge potential might 
represent a double-edged sword. As emerges from Table 1, 
some miRNAs exerting a positive effect on one particular 
cell type might simultaneously have a deleterious influence 
on another cardiac cell population. The outbalancing force 
should therefore be identified with caution. Indeed, such a 
spectrum of actions implicates the need for a comprehensive 
knowledge of miRNAs networks and interplay in order to 
predict (and prevent) possible side effects.
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