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Abstract
The main therapeutic options for colorectal cancer are surgical resection and 
adjuvant chemotherapy in non-metastatic disease. However, the evaluation of the 
overall adjuvant chemotherapy benefit in patients with a high risk of recurrence is 
challenging. Radiological images can represent a source of data that can be 
analyzed by using automated computer-based techniques, working on numerical 
information coded within Digital Imaging and Communications in Medicine files: 
This image numerical analysis has been named “radiomics”. Radiomics allows the 
extraction of quantitative features from radiological images, mainly invisible to 
the naked eye, that can be further analyzed by artificial intelligence algorithms. 
Radiomics is expanding in oncology to either understand tumor biology or for the 
development of imaging biomarkers for diagnosis, staging, and prognosis, 
prediction of treatment response and diseases monitoring and surveillance. 
Several efforts have been made to develop radiomics signatures for colorectal 
cancer patient using computed tomography (CT) images with different aims: The 
preoperative prediction of lymph node metastasis, detecting BRAF and RAS gene 
mutations. Moreover, the use of delta-radiomics allows the analysis of variations 
of the radiomics parameters extracted from CT scans performed at different 
timepoints. Most published studies concerning radiomics and magnetic resonance 
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imaging (MRI) mainly focused on the response of advanced tumors that under-went neoadjuvant 
therapy. Nodes status is the main determinant of adjuvant chemotherapy. Therefore, several 
radiomics model based on MRI, especially on T2-weighted images and ADC maps, for the 
preoperative prediction of nodes metastasis in rectal cancer has been developed. Current studies 
mostly focused on the applications of radiomics in positron emission tomogra-phy/CT for the 
prediction of survival after curative surgical resection and assessment of response following 
neoadjuvant chemoradiotherapy. Since colorectal liver metastases develop in about 25% of 
patients with colorectal carcinoma, the main diagnostic tasks of radiomics should be the detection 
of synchronous and metachronous lesions. Radiomics could be an additional tool in clinical 
setting, especially in identifying patients with high-risk disease. Nevertheless, radiomics has 
numerous shortcomings that make daily use extremely difficult. Further studies are needed to 
assess performance of radiomics in stratifying patients with high-risk disease.

Key Words: Colorectal cancer; Radiomics; Artificial intelligence; Liver metastases; Magnetic resonance 
imaging; Computed tomography; Positron emission tomography/computed tomography

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Stratifying colorectal cancer patients with high-risk disease and the evaluation of the overall 
chemotherapy benefit are a clinical challenge. Radiomics through radiological images analysis using 
automated computer-based techniques allows the extraction of quantitative features from radiological 
images, mainly invisible to the naked eye, that can be further analyzed by artificial intelligence algorithms. 
Several efforts have been made to develop radiomics signatures for colorectal cancer patient using 
computed tomography (CT), magnetic resonance imaging, and positron emission tomography/CT, in 
particular to understand tumor biology, to develop imaging biomarkers for diagnosis, staging, and 
prognosis, to predict treatment response and to monitor disease.

Citation: Inchingolo R, Maino C, Cannella R, Vernuccio F, Cortese F, Dezio M, Pisani AR, Giandola T, Gatti M, 
Giannini V, Ippolito D, Faletti R. Radiomics in colorectal cancer patients. World J Gastroenterol 2023; 29(19): 
2888-2904
URL: https://www.wjgnet.com/1007-9327/full/v29/i19/2888.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i19.2888

INTRODUCTION
Colorectal cancer is the fifth-most-common frequent in terms of incidence and mortality, with 1480000 
new cases in 2020 worldwide[1]. The TNM staging process itself is widely based on radiological 
definition of boundaries of primary lesion, nodal and distant metastases. The main therapeutic options 
for colorectal cancer are surgical resection and adjuvant chemotherapy in non-metastatic patients; 
however, the evaluation of the overall adjuvant chemotherapy benefit in patients with a high risk of 
recurrence is a clinical challenge[2]. The decision is based on the TNM staging system[3], which 
represents the most important parameter: Colorectal cancer patients at stage III are globally recognized 
as patients who can benefit from chemotherapy, while for those at stage II with other clinical risk 
factors, the advantages of chemotherapy are still debated[2,4]. In presence of clinical risk factors, the 
final strategy is often decided by the oncologist or multidisciplinary teams.

Nowadays radiological images can represent a source of data that can be analyzed by using advanced 
computer-based techniques, working on numerical information coded within the Digital Imaging and 
Communications in Medicine files[5]: This image numerical analysis has been named “radiomics”[6]. 
Radiomics might be used as a non-invasive imaging biomarker and be able to provide a quantitative 
evaluation of medical images, with the chance to shift imaging from a qualitative to a quantitative 
approach[7,8]. To date, the radiomics approach has been extensively investigated in cancer patients with 
a specific focus on tumor diagnosis, staging, prognosis prediction, and long-term monitoring[7,9,10]. In 
this context, radiomics could play a pivotal role in colorectal cancer workup with the expectancy to help 
clinicians in identifying patients with high-risk disease.

https://www.wjgnet.com/1007-9327/full/v29/i19/2888.htm
https://dx.doi.org/10.3748/wjg.v29.i19.2888
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RADIOMICS APPLIED TO CANCER-SUMMARY (PATHOLOGICAL CORRELATION,  
DIAGNOSIS, PROGNOSIS)
Since its advent in 2012[5], radiomics has been extensively applied in oncology studies and it has been 
demonstrated as a promising tool that can offer a risk-free and efficient method for diagnosis, classi-
fication, and prognosis prediction in oncology[11]. Radiomics, indeed, allows the extraction of 
quantitative features from radiological images, mainly invisible to the naked eye, that can be further 
analyzed by machine learning and artificial intelligence (AI) algorithms to produce signatures repres-
enting tumor phenotype.

The radiomics pipeline consists of different steps (Figure 1). First, multi-dimensional and multi-
institutional data should be collected including high-quality medical images, clinical, and, eventually, 
molecular data. Once acquired, images should be pre-processed to improve image quality, harmonize 
raw data, and ensure generalizability across imaging protocols and patient populations, especially if 
multicentre datasets are acquired. This pre-processing step usually involves image co-registration, 
image denoising, signal intensity standardization, and/or normalization. Once the image datasets have 
been pre-processed, tumors should be segmented to extract regions of interest (ROIs) on which 
subsequent steps will be focused on. This task can be performed either manually, semi- or fully 
automatically. A big effort in the research field is addressed to the development of AI-based systems to 
automatically segment lesions and overcomes the most common limitations of manual segmentation. 
Afterward, from the segmented ROIs a large number of parameters (features) are extracted, including: 
(1) First-order features, from gray-level intensity histograms and lesion shape; (2) second-order features, 
related to the spatial relationship between pixels, calculated using different matrices, e.g., gray-level co-
occurrence, gray-level run-length, gray-level dependence, gray-level size zone, neighboring gray tone 
difference; and (3) transform-based features, e.g., Wavelet, Gabor, Laws, Laplacian. However, since the 
number of extracted features could be much larger than the sample size of patients included in the 
algorithms’ development, it is vital to reduce the number of features through a step called features 
selection. This step will strongly reduce the risk of overfitting[12], which occurs when the algorithm 
overadapts its performances based on data in the training set and consequently loses its generalizability. 
Besides, features selection will ensue to exclude features that are non-reproducible, redundant, and/or 
non-relevant for the task, and to reduce the computational cost, while improving the performance of the 
model[13]. Once the most performing features are selected, the radiomics signature is finally developed 
by using algorithms for classification, such as logistic regression[14,15], k-nearest neighbour[16], naïve 
Bayes classifier[17], support vector machines (SVM)[18,19], random forest (RF)[20,21], neural network
[22,23] and deep learning[24,25]. In this step, is crucial to divide the image dataset into three subgroups: 
One for training, used to develop the algorithm, the second for testing, to fine-tune the model, and the 
last for validation, which aims to evaluate the performance on a different dataset. Training and testing 
could be performed also using a cross-validation approach, i.e., in which different portions of the 
dataset are iteratively used to train and test the model. Conversely, the validation should be performed 
using patients that were never seen during the development of the algorithms. The validation step can 
be internal, when applied in a similar clinical setting and population to the training set, or preferably 
external, when applied in multiple clinical settings with varying disease prevalence[12,26].

Thanks to the vast number of images routinely used by radiologists and oncologists in their daily 
workload, radiomics is substantial in oncology to understand tumor biology or develop imaging 
biomarkers useful for diagnosis, staging, prediction of treatment response, disease monitoring and 
surveillance[27].

Understanding tumor biology through radiomics can be feasible because it allows the extraction of 
quantitative information about spatial and temporal heterogeneity in a non-invasively way and using 
routinely acquired images. This information can be consequently correlated with tumors’ phenotype 
that can either reflects distinct traits (e.g., internal necrosis and proliferation at the periphery) or mirrors 
genomic and molecular traits or be a signature or different outcomes. Moreover, texture features used in 
radiomics have been also demonstrated useful in reflecting key oncogenomics processes such as tumor 
angiogenesis[28], hypoxia[29], tumor invasion[30] and tumor proliferation[31].

The second scope of radiomics in the oncology field is to enhance precision medicine through the 
implementation of diagnostics and prognostic imaging biomarkers in a variety of solid tumors. 
Biomarkers for detection and diagnosis are those in a more advanced status since there are many studies 
that demonstrated their usefulness in discriminating between healthy, benign and malignant cancer in 
different sites[23,32-34]. However, the most promising applications in which radiomics could truly 
improve clinical practice are related to the prediction of treatment response and disease monitoring. 
Indeed, knowing, before or during therapy, which patients would respond might help choosing the best 
management possible. Moreover, after treatment, radiomics biomarkers may suggest more intense post-
treatment surveillance due to a high risk of a tumor recurrence for a particular patient. In parallel to 
radiomics, it is worthwhile underling that a boost for the development of prognostic biomarkers for 
precision medicine could be provided by integrating radiomics features to additional layers of -omics 
information, i.e., pathomics (features derived from digital pathological samples), and genomics. The 
motivation for this multi-omics approach to disease understanding is that the conventional markers 
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Figure 1 Radiomics pipeline. ROI: Regions of interest.

discovery which molecularly dissect the disease part by part, if the sum of knowledge of parts will 
explain the operation of the whole, has mostly failed to understand the causes and cures for complex 
diseases. On the contrary, recent evidence suggests that patterns discovered from high dimensional, 
multi-modal data could improve estimation of disease aggressiveness and patient outcomes compared 
to single modality data.

COMPUTED TOMOGRAPHY
Tumor and nodes
Several efforts have been made to develop radiomics signatures for colorectal cancer patient using 
computed tomography (CT) images with different aims (Table 1). Li et al[35] developed and validated a 
clinical-radiomics nomogram for the preoperative prediction of nodes metastasis. They validated their 
algorithm on an internal dataset of 308 patients (136 with and 172 without lymph node metastases) and 
showed that the model which included clinical parameters, radiomics on both tumor and peripheral 
nodes was the one reaching the highest accuracy in predicting nodes metastases [area under the curve 
(AUC) = 0.7509; 95%CI: 0.6901-0.8071; accuracy: 73.70%; sensitivity: 60.29%; specificity: 84.30%; positive 
predictive value (PPV): 75.23%; and negative predictive value (NPV): 72.86% in the internal validation 
set]. If further validated, also on an external validation set, this model could be used as an individu-
alized preoperative non-invasive tool, assisting in clinical treatment decision making and achieving 
precision treatment.

From another point of view, radiomics has also been proven effective in detecting BRAF and RAS (
KRAS and NRAS) gene mutations, that are genomics signatures usually associated with shorter disease-
free and overall survival. These mutations are determined through genetic molecular profiling by 
sampling the tumor, however biopsy carries several drawbacks, including the risk of adverse events, 
such as bleeding, physical and psychological discomfort[36].

For these reasons, radiomics could potentially be used to non-invasively predict RAS and BRAF 
mutation status in patients with colorectal cancer and to further guide treatments with surgery or 
chemotherapy[16,37]. Shi et al[16] validated a combined score that tracks RAS (KRAS and NRAS) and 



Inchingolo R et al. Current state and diagnostic applications

WJG https://www.wjgnet.com 2892 May 21, 2023 Volume 29 Issue 19

Table 1 Summary of the most important published papers regarding the usefulness of radiomics in colorectal cancer patients using 
computed tomography imaging

Ref. Imaging Main aim Patients (n) Main findings

Li et al[35], 
2020

CT Prediction of nodes 
metastases

766 Overall diagnostic values: Sensitivity = 60.3%; specificity = 84.3%; PPV = 
75.2%; NPV = 72.9%; AUC = 0.750

Shi et al[16], 
2020

CT Detect RAS and BRAF 
phenotypes

159 Combined score (semantic features and radiomics) AUC = 0.950; validation 
cohort AUC = 0.790

Giannini et al
[41], 2020

CT Predict response to 
treatment

38 (141 
lesions)

Per-lesion diagnostic values: Sensitivity = 89%; specificity = 85%; PPV = 78%; 
NPV = 93%

Dercle et al
[47], 2020

CT Tumor response to anti-
EGFR therapy

667 Sensitivity to therapy: AUCs 0.800 and 0.720 for FOLFIRI and FOLFIRI + 
cetuximab

Dohan et al
[48], 2020

CT Overall survival 491 SPECTRA score > 0.02 has a lower OS; SPECTRA Score at 2 mo has the same 
prognostic values as RECIST at 6 mo

Giannini et al
[41], 2020

CT Predict response to 
treatment

57 (242 
lesions)

Per-lesion diagnostic values: Sensitivity = 99%; specificity = 94%; PPV = 95%; 
NPV = 99%; the radiomic approach can predict R- wrongly classified by 
RECIST as R+

Taghavi et al
[103], 2021

CT Prediction of synchronous 
liver metastases

91 The radiomics model outperformed the clinical model: AUC = 0.93 vs 0.64

Rao et al[108], 
2014

CT Prediction of synchronous 
liver metastases

29 The mean entropy of the liver is significantly higher in metastatic patients (P = 
0.02); Liver entropy can help the differential between metastatic and non-
metastatic patients (AUC = 0.73-0.78)

Li et al[109], 
2022

CT Prediction of synchronous 
liver metastases

323 A combined clinical-radiomics model has a good AUC (= 0.79) in detecting 
liver metastases

Ng et al[111], 
2013

CT Prediction of overall 
survival

55 Entropy, uniformity, kurtosis, skewness, and standard deviation of the pixel 
distribution histogram can predict survival; each parameter can be considered 
an independent predictor of the overall survival state

Mühlberg et al
[112], 2021

CT Prediction of overall 
survival

103 Tumor burden score can discriminate patients with at least 1-year survival 
(AUC = 0.70); a machine-learning model better predict survival (AUC = 0.73)

Ravanelli et al
[116], 2019

CT Prediction of response and 
prognosis after 
chemotherapy

43 Uniformity is lower in responders (P < 0.001); uniformity is independently 
correlated with radiological response (OR = 20.00), overall survival (RR = 6.94) 
and progression-free survival (RR = 5.05)

PPV: Positive predictive value; NPV: Negative predictive value; AUC: Area under the curve; OS: Overall survival; SPECTRA: Survival PrEdiction in 
patients treated by FOLFIRI and bevacizumab for mCRC using contrast-enhanced computed tomography TextuRe Analysis; CT: Computed tomography.

BRAF mutant phenotypes in colorectal cancer from multicentre CT image data AUC of 0.79 on the 
validation cohort.

Recently, efforts have been made to translate radiomics signatures from a patient level to a lesion 
level, since it has been demonstrated that heterogeneous response, caused by the onset of new resistant 
tumor clones in some lesions, is a predictor of poor overall survival[38-40]. Differentiating which 
colorectal liver metastases (CRLM) responds and which lingers and eventually will progress in the same 
patient could pave the way to truly personalized treatment. Giannini et al[41] preliminary demonstrated 
the feasibility of using radiomics features from baseline CT to predict response of treatment after 3 mo. 
They validated the signature on an independent cohort of patients obtaining encouraging results 
especially in identifying patients with outlier lesions, i.e., that do not respond in general condition were 
most lesions respond. In these cases, a target biopsy on non-responder lesions could have revealed a 
different genetic makeup or, in absence of extrahepatic lesions, suggested the local ablation of outlier 
metastases. More recently, another breakthrough has been made using the use of delta-radiomics, 
whose aim is to assess the treatment-induced change of radiomics features over time that could provide 
information about prognosis[42,43]. These variations can be measured in different ways, for example as 
the differences between features computed on the same tumour before and after treatment[44,45] or the 
net-change (i.e., difference of radiomics features after treatment over the value before treatment)[46]. 
Other than providing additional information about tumour behaviour, delta-radiomics represents a 
very interesting approach since it could theoretically allow to adapt and modulate the ongoing 
treatment approach thanks to the predictive power of this technique[42].

Delta-radiomics has been already proven effective in predicting overall survival in patients with 
metastatic colorectal cancer[47,48]. Dercle et al[47] developed and validated on a multicentre dataset a 
delta-radiomics associated with tumor sensitivity to anti-EGFR therapy in colorectal cancer patients 
(AUC = 0.80). Similarly, Dohan et al[48] validated a delta-radiomics signature able to predict overall 
survival and identify good responders better than RECIST1.1 criteria in patients with metastatic 
colorectal cancer treated by FOLFIRI and bevacizumab as a first-line treatment. From a per-lesion point 
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of view, Giannini et al[45] validated a delta-radiomics signature able to predict long-term response (i.e., 
more than 8 mo) of individual CRLM with an accuracy of 86% in the validation dataset. Of note, the 
delta-radiomics signature was able to reliably predict non-responder liver metastases wrongly classified 
as responder by lesion RECIST at the first time point. This per-lesion approach could strongly impact 
treatment, since according to the delta-radiomics signature it would be possible to pinpoint lesions with 
distinct biological and molecular features, thus enabling studies toward lesion-specific personalized 
treatment in liver-only metastatic colorectal cancer patients.

MAGNETIC RESONANCE IMAGING
Tumor evaluation
The application of radiomics and texture analysis by using magnetic resonance imaging (MRI) images 
has increased interest in recent years (Table 2), with a specific focus on liver pathology, renal carcinoma, 
prostate cancer, and, in slight minority of published studies, rectal cancer[49]. As mentioned above, the 
staging of rectal cancer is mainly based on MRI; however, radiological images analyzed by dedicated 
software can add important data useful for the best management of patients. In this setting, it is of 
utmost importance to underline the potentiality of radiomics as a non-invasive biomarker for predicting 
histopathological data, as demonstrated for different abdominal pathological conditions, related to the 
liver, pancreas, and colorectal[8]. Even if for many abdominal organs it can be difficult to obtain a useful 
histological sample, rectal cancer pathological data are easy to collect, considering that colonoscopy or 
sigmoidoscopy, depending on the location of the lesion, is the reference standard technique[50]. On 
these bases, most published studies when this search was performed mainly focused on the response of 
advanced tumors that underwent neoadjuvant therapy.

Recently, Chen et al[51], in a single-center prospective study, enrolled 137 patients who underwent 
neoadjuvant chemotherapy. The Authors demonstrated that the traditional clinical model reported an 
AUC of 67.6% and 70.1% in the training and validation cohort, respectively, quite similar to the selective 
clinical model (77.5% and 59.6%, respectively). On the other hand, when combining radiomics with 
clinical data the AUC raised to 94.9% and 84.4% in the training and validation cohort, respectively.

Similarly, Horvat et al[52], by enrolling 114 patients who underwent neoadjuvant chemotherapy, 
demonstrated that radiomics can help the radiologist determine the pathological complete response. 
The Authors found that combined clinical and radiomics models increased the agreement compared 
with radiologist interpretation and can help the less experienced radiologist in increasing diagnostic 
values, in particular specificity, PPV, and NPV.

Analogously, Dinapoli et al[53] analyzed the radiomics data of 221 patients from three different 
centers and demonstrated that this tool can help the prediction of pathological complete response before 
starting neoadjuvant chemotherapy. Moreover, the Authors performed an external validation, to test the 
obtained results, with good diagnostic values.

Even if few studies are published in the literature, to test the robustness of the radiomics approach in 
rectal cancer patients, Shahzadi et al[54], demonstrated that only one study can be used for external 
validation, underlying the overall lack of reproducibility and the need of further standardization before 
considered it a useful clinical tool. In this setting, future directions should be focused on multicentre 
studies with standardized MR protocols to validate and test the feasibility of the radiomics approach 
and its potential usefulness in current everyday clinical practice.

Node’s evaluation
Nodes metastases is the main metastatic site of colorectal cancer and an important cause of post-
operative recurrence and death[55]. Nodes status is a key factor in the TNM staging of colorectal cancer 
and the main determinant of adjuvant chemotherapy[56,57].

Preoperative knowledge of NS can provide valuable information for determining the need for 
adjuvant therapy and the adequacy of surgical resection, thus aiding in pre-treatment decision making
[58].

In clinical practice, CT is the most used preoperative imaging method to detect metastatic lesions and 
perform tumor staging in patients with colorectal cancer. However, the limitation of CT examination is 
that it cannot discriminate between benign and malignant nodes[59].

MRI has the highest contrast resolution for soft tissues, allowing the best depiction of neoplastic 
lesions, their anatomical relationships, the depth of the rectal wall involvement, extramural venous 
invasion, circumferential resection margins, and the assessment of the N stage. For these reasons, MRI 
examination is considered the reference standard for locoregional staging and restaging in RC according 
to the main international guidelines[60-62].

Advances in pattern recognition tools and the increase in data set sizes have facilitated the 
development of radiomics, which may potentially improve predictive accuracy in oncology[63].

Therefore, in the last decade, several papers have been published, with different imaging techniques, 
reporting the potential role of radiomics in diagnosis, characterization, and evaluation of the tumor 
response to treatments[64-67] and nodal assessment[68-70].
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Table 2 Summary of the most important published papers regarding the usefulness of radiomics in colorectal cancer patients using 
magnetic resonance imaging

Ref. Imaging Main aim Patients (n) Main findings

Horvat et al
[52], 2022

MRI Response to 
chemotherapy

114 Combined radiological-radiomics model increased agreement (κ = 0.82 vs κ = 
0.25)

Dinapoli et al
[53], 2018

MRI Pathological complete 
response

221 Significant covariates, skewness, and entropy can predict pathological complete 
response, with AUCs = 0.730 and 0.750 for internal and external cohorts

Shahzadi et al
[50], 2022

MRI Response to 
chemotherapy

190 Radiomics combined with the T stage better predict response

Liu et al[23], 
2021

MRI Prediction of nodes 
metastases

186 Clinical-radiomics model improves performance: AUC = 0.827

Chen et al[72], 
2022

MRI Tumor differentiation and 
nodes metastases

37 (487 nodes) Radiomics features of the primary tumor can predict tumor differentiation: AUC 
= 0.798

Liu et al[73], 
2017

MRI Tumor differentiation 68 Skewness and entropy are lower in pT1-2 in comparison with pT3-4 (P < 0.05)

Yang et al[74], 
2019

MRI Prediction of T and N 
stage

88 Skewness, kurtosis, and energy are higher in metastatic nodes in comparison 
with non-metastatic ones (P < 0.001)

Ma et al[75], 
2019

MRI Prediction of nodes 
metastases and N staging

152 SVM has higher diagnostic values for T and N stages (AUC = 0.862) in 
comparison with MLP and RF

Zhu et al[76], 
2019

MRI Prediction of nodes 
metastases

215 Radiomic model AUC = 0.818

Zhou et al[77], 
2020

MRI Prediction of nodes 
metastases

391 The combined model predicts nodes metastases: NPV = 93.7%, AUC = 0.818

Shu et al[34], 
2019

MRI Prediction of synchronous 
liver metastases

194 The Radiomics model combined clinical risk factors and LASSO features and 
showed a good predictive performance: AUC = 0.921

Liu et al[107], 
2020

MRI Prediction of synchronous 
liver metastases

127 A radiomic nomogram presents an accuracy of 81.6% in predicting liver 
metastases (AUC = 0.918)

Granata et al
[115], 2022

MRI Prediction of overall 
survival

90 Second-order features can predict infiltrative tumor growth, tumor budding, and 
mucinous type; a second-order feature can predict the risk of recurrence with an 
accuracy of 90%

Jalil et al[119], 
2017

MRI Prediction of prognosis 
after chemotherapy

56 MPP can predict overall survival (HR = 6.9) and disease-free survival (HR = 
3.36); texture analysis can predict relapse-free survival on pre- and post-
treatment analyses

AUC: Area under the curve; SVM: Support vector machine; MLP: Multilayer perceptron; RF: Random forest; NPV: Negative predictive value; HR: Hazard 
ratio; MPP: Mean positive pixel; MRI: Magnetic resonance imaging.

MRI can provide multiparameter images different from those obtained by CT, so it is of interest 
whether there exists an association between NS and multiregional radiomics features of multiparametric 
MR images in rectal cancer patients[71].

Liu et al[71] aimed to develop and validate a multiregional radiomics prediction model based on MRI 
and combine it with clinical-semantic data for the individualized preoperative prediction of lymph node 
metastasis in rectal cancer patients.

Similarly, the study of Chen et al[72] provides two non-invasive and quantitative methods, which 
respectively predict the tumor differentiation and regional nodes metastases for rectal cancer preoper-
atively. MRI images of both the primary tumor alongside the lymph nodes and specimens were 
performed with a node-to-node match and labeling. A prediction model was then successfully 
developed, which provided AUC values of 84.6% and 73.3% in the training and test cohort, respectively.

Liu et al[73] performed a histogram analysis on the ADC map of the whole tumor and reported that 
entropy was an independent predictor of nodal involvement. Recently, Yang et al[74] performed the 
same analysis on T2-weighted imaging of the whole tumor: They found that a lower skewness was an 
independent risk factor for lymph node metastases.

In a recent retrospective single-center study, radiomics features were extracted from preoperative 
high-resolution T2-weighted imaging of different histological RC and analyzed using different 
algorithms. The RF analysis showed a good diagnostic performance for the N-stage with an AUC of 
74.6%. The prediction model was able to differentiate N0 from N1-N2 patients with a sensitivity of 
79.0% and a specificity of 72.0%[75].

Zhu et al[76] compared the performance of two models based, respectively, on the radiomics 
signature of the primary tumor and of the lymph nodes, before and after chemoradiotherapy (CRT), for 
the prediction of nodal involvement in advanced rectal cancer. The authors concluded that the features 
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from the lymph node model perform better than the tumor features for the prediction of nodal 
involvement[76].

Similarly, Zhou et al[77] evaluated a multi-parametric MRI radiomics model for nodal assessment 
following CRT by combining the radiomic signature with an experienced radiologist’s visual evaluation: 
stratified analyses indicated that the combined model could predict lymph node metastasis with a NPV 
of 100 and 87.8% after treatment[77].

Even if current literature is focusing on the importance and applicability of radiomics in rectal cancer, 
no significant studies have been published in the field of colorectal cancer, mainly because MR is not 
still validated as imaging technique for local staging and restaging of this kind of tumor.

PET/CT
18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is 
frequently employed in the staging and post-neoadjuvant assessment of patients with rectal cancer. 
PET/CT provides functional information of the primary tumor, nodes and distant metastases. In 
patients with colorectal cancer, the combination of texture parameters with the functional information 
obtained with PET/CT scan can further enhance the predictive power of PET/CT imaging[78]. Current 
studies mostly focused on the applications of radiomics in PET/CT for the prediction of survival after 
curative surgical resection and assessment of response following neoadjuvant chemoradiotherapy 
(Table 3).

For the prediction of prognosis in patients with colorectal cancer, Kang et al[79] showed that 
radiomics score from baseline PET scans was significantly associated with progression-free survival. 
Similarly, Lovinfosse et al[80] and Hotta et al[81] correlated the texture features in PET/CT with both 
progression-free survival and overall survival. Furthermore, a recent study provided a combined 
clinical-radiomics model with high predictive performance (C-index of 0.780) for recurrence-free 
survival in 196 patients with PET/CT[82].

Several studies explored the potential of radiomics for the prediction of response and survival after 
neoadjuvant chemoradiotherapy[83-89]. In an initial study of 27 patients with rectal cancer treated with 
neoadjuvant chemoradiotherapy, Bundschuh et al[83] calculated texture parameters (skewness and 
kurtosis) on PET/CT, which provided a good performance for late response prediction but no 
significant predictive capability for the assessment of early response. In a retrospective study performed 
by Bang et al[84], texture parameters extracted from PET images correlated with both tumor regression 
grading and disease-free survival in patients with rectal cancer undergoing neoadjuvant chemoradio-
therapy. Giannini et al[85] combined radiomics features from PET and MRI to predict pathological 
complete response following neoadjuvant chemoradiotherapy with high accuracy (AUC of 0.86) in 
patients with rectal cancer. Similarly, Schurink et al[86] combined pretreatment tumor features on PET/
CT and MRI to predict response to chemoradiotherapy in rectal cancer, with an AUC of 0.81. Shen et al
[87] developed a RF model to predict pathological complete response after neoadjuvant chemoradio-
therapy in 169 patients with rectal cancer, which demonstrated a sensitivity of 97.3% and a specificity of 
81.8% for the identifications of cancers with complete response. Nevertheless, a study by Karahan Şen et 
al[88] found no superiority of texture features compared to metabolic tumor volume in predicting 
response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer.

For the prediction of lymph node metastasis, a retrospective study published by He and colleagues
[90] analyzed the radiomics score and five machine-learning models to predict metastatic lymph nodes 
based on the radiomics features of 199 colorectal cancers, with an AUC of 0.747-0.581 in the test set. 
Additionally, the performance of PET/CT radiomics features for predicting perineural invasion has 
been explored in a recent retrospective study[91].

Finally, few other studies explored the correlation between radiomics signature extracted from PET/
CT and rectal cancer genotypes, such as microsatellite instability status[92], RAS mutational status[93,
94], TP53 and adenomatous polyposis coli mutations[94].

Despite the promising value of radiomics in PET/CT scans of rectal cancer, it should be noted that all 
current results are based on retrospective single-center studies with heterogeneity on the type of 
extracted features and analysis. Moreover, several current studies demonstrated insufficient quality 
according to the radiomics quality score assessment[95].

CRLM
CRLM develop in about 25% of patients with colorectal carcinoma, being more commonly synchronous 
(14%-17%) rather than metachronous (8%-15%)[96-99]. CT is most adopted to detect CRLM at 
preoperative staging due to its higher availability compared to MRI, while MRI is usually used in 
selected doubtful cases particularly in the challenging scenario of the “too small to characterize” hypoat-
tenuating lesion. In addition, chemotherapy regimens may cause focal or diffuse hepatic changes at 
imaging that can profoundly alter visualization of hepatic metastases on CT, reducing its diagnostic 
accuracy and MRI proves to be helpful as problem-solving tool in some cases[100]. Therefore, the 
overall sensitivity, specificity and accuracy for the diagnosis of CRLM are lower for CT compared to 
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Table 3 Summary of the most important published papers regarding the usefulness of radiomics in colorectal cancer patients using 
positron emission tomography/computed tomography imaging

Ref. Imaging Main aim Patients (n) Main findings

Lovinfosse et al
[80], 2018

PET/CT Progression-free and 
overall survival

86 SUVmean, dissimilarity, and contrast from the neighborhood intensity-
difference matrix are independently associated with overall survival

Hotta et al[81], 
2021

PET/CT Progression-free and 
overall survival

94 MTV, TLG, and GLCM entropy are associated with overall survival; 
SUVmax, MTV, TLG, and GLCM entropy are associated with progression-
free survival

Bundschuh et al
[83], 2014

PET/CT Response after 
neoadjuvant 
chemotherapy

27 COV can assess histopathologic response during (sensitivity 68%, 
specificity 88%) and after (sensitivity 79%, specificity 88%) therapy

Bang et al[84], 
2016

PET/CT Response after 
neoadjuvant 
chemotherapy

74 MV is associated with 3-yr disease-free survival; Kurtosis and kurtosis 
gradient are associated with 3-yr disease-free survival

Giannini et al
[85], 2019

PET/CT Response after 
neoadjuvant 
chemotherapy

52 Second-order texture features (five from PET and one from MRI) can help 
distinguish responder and non-responder patients: Sensitivity = 86%; 
specificity = 83%; AUC = 0.860 

Yuan et al[89], 
2021

PET/CT Response after 
neoadjuvant 
chemotherapy

66 A radiomics model can predict TRG 0 vs TRG 1-3: Sensitivity = 77.8%, 
specificity = 89.7%, AUC = 0.858

Schurink et al
[86], 2021

PET/CT Response after 
neoadjuvant 
chemotherapy

61 Combined baseline and global tumor features better predict response 
compared to baseline and local texture (AUC = 0.83 vs 0.79)

Shen et al[87], 
2020

PET/CT Predict pathological 
complete response

169 RF can predict complete response: Sensitivity = 81.8%; specificity = 97.3%; 
PPV = 81.8%; NPV = 97.3%; accuracy = 95.3%

He et al[90], 2021 PET/CT Prediction of nodes 
metastases

199 Logist regression and XGBoost can accurately predict nodes metastases 
with AUC = 0.866 and 0.903, respectively

Ma et al[91], 2022 PET/CT Prediction of perineural 
invasion and outcome 

131 12 radiomics signatures are associated with peri-neural invasion; a radiomic 
score can differentiate between perineural positive and negative lesions: 
AUC = 0.900

Li et al[92], 2021 PET/CT Prediction of 
microsatellite instability

173 2 radiomics features can predict microsatellite instability: Sensitivity = 
83.3%; specificity = 76.3%; accuracy = 76.8%

Lovinfosse et al
[93], 2016

PET/CT Prediction of RAS status 151 SUVmax, SUV mean, skewness, SUV standard deviation, and SUV 
coefficient of variation are associated with RAF mutation (all P < 0.001)

Chen et al[94], 
2019

PET/CT Prediction of genetic 
mutations

74 MTV and SUV max are increased in mutated KRAS tumors (all P < 0.001); 
short-run low gray-level emphasis is associated with p53 mutations (P = 
0.001); gray-level zone emphasis is associated with APC mutations (P = 
0.006)

PET/CT: Positron emission tomography/computed tomography; PPV: Positive predictive value; NPV: Negative predictive value; AUC: Area under the 
curve; RF: Random forest; MTV: Metabolic tumor volume; TLG: Total lesion glycolysis; GLCM: Gray-level co-occurrence matrix; COV: Coefficient of 
variation; MV: Metabolic volume; OR: Odd ratio; MPP: Mean positive pixel.

MRI[100-102]. For this reason, at some center, abbreviated gadoxetate disodium MRI protocols are 
adopted rather than trusting CT only[103,104].

The adoption of radiomics has been proven successful in diagnostic, prognostic, and therapeutic 
stages[78].

Diagnosis and risk assessment
In term of diagnosis of synchronous classical logistic regression models (CLRM), it is relevant to 
highlight that even with MRI the sensitivity may be lower than 80%, particularly in patients with 
mucinous adenocarcinoma as primary tumor, prior local treatment in the liver or metastases smaller 
than 1 cm[102]. Therefore, the first main diagnostic task of radiomics should be the identification of 
CRLM before they can be seen by radiologist’s naked eye (i.e., detection of synchronous metastases). In a 
pilot study, Devoto et al[105] proved that radiomics can potentially predict the development of liver 
metastases on baseline liver CT, by demonstrating a higher heterogeneity of liver texture analysis in 
patients who developed liver metastases compared to patients who did not develop them. Other 
authors[34,106] investigated whether radiomics applied to T2-weighted images of the primary tumor on 
MRI could help in the preoperative prediction of CRLM: Shu et al[34] used a region of interest while Liu 
et al[107] used a volume of interest and both demonstrated that a radiomics nomogram constructed by 
combining radiomics and clinical data achieve AUC higher than 90% in the preoperative prediction of 
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CRLM.
The second main diagnostic task of radiomics should be preoperative identification of patients at risk 

of developing CLRM (i.e., detection of metachronous metastases) based on micro-environmental 
changes in the apparently normal liver. Taghavi et al[106] and Rao et al[108] designed a prediction 
model based on liver CT radiomics for the detection of metachronous CRL, with the first study 
including more patients imaged at three centers and combining radiomics and clinical data achieving 
AUC of up to 86% in the validation cohort. Other studies tried to achieve the same goal by assessing the 
primary tumor on CT[109] or MRI[110]. Specifically, Li et al[109] obtained an AUC of 0.72 for the 
prediction of metachronous CLRM by combining clinical data and volumetric radiomics of the primary 
tumor on CT. In regard of MRI, a systematic review including 1497 patients estimated a pooled 
sensitivity and specificity of radiomics applied to rectal MRI of 0.76 and 0.85 respectively in predicting 
metachronous CLRM, and AUC of the included studies ranging from 0.83 to 0.87[110].

Prognosis
In terms of prognostic information, radiomics of CRLM has emerged as a promising tool to preoper-
atively predict patient survival at diagnosis and after therapy. Ng et al[111] suggested that tumors 
demonstrating less texture tumor heterogeneity using radiomic CT analysis may predict poorer survival 
at diagnosis[111]. Mühlberg et al[112] showed that CT-based geometric distribution and radiomics 
analysis of whole liver tumor burden from preoperative CT may help for prediction of 1-year survival. 
Radiomics of CRLM on CT seems also promising for differentiating desmoplastic from replacement 
histopathological growth patterns[113], and this differentiation may provide an earlier estimate of 
disease aggressiveness and prognosis as the desmoplastic histopathological growth pattern usually has 
longer overall survival[114]. As demonstrated by Granata et al[115] contrast MR-based radiomics and 
machine learning analysis may help in the preoperative prediction of the front of tumor growth 
(expansive or infiltrative), the tumor budding (absent, low grade or high grade) and tumor recurrence 
after surgery, all of which may affect patient outcome. Studies looking at survival after chemotherapy in 
patients with CRLMs obtained similar results regarding the role of texture homogeneity/heterogeneity 
in the prediction of prognosis[116,117]. As an example, Ravanelli et al[116] demonstrated that lower 
uniformity of CRLM on CT texture analysis was independently correlated with overall survival and 
progression free survival in patients treated with bevacizumab, but not in those treated with standard 
chemotherapy. Other radiomic features such as entropy, kurtosis, and skewness have been investigated 
so far on CT and MRI, all providing an additional piece of the puzzle and supporting the concept that 
the addition of texture analysis in the pre-treatment assessment may provide information on prognosis 
in patients with primary colorectal cancer and CLRM[118,119].

Treatment response
Finally, the correct assessment of response in the treatment of CLRM and the prompt prediction of early 
response is of utmost important in defining the success or failure of treatment interventions and in the 
selection of those patients requiring a change of the therapeutic regimen. Chemotherapy for CLRM in 
the modern era of oxaliplatin- and irinotecan-containing regimens (e.g., FOLFOX, FOLFIRI, CAPOX/
FOLFOXIRI, XELOX) has been implemented with the introduction of targeted biologics and immuno-
therapeutic agents (e.g., bevacizumab, cetuximab, panitumumab, pembrolizumab), thus expanding the 
proportion of patients eligible for curative-intent surgery, but their use may lead to side effects or 
complications[120]. Prediction of tumor response before starting chemotherapy would allow to choose 
the best treatment, avoiding unnecessary adverse effects of the therapy. Radiomics of CLRM has been 
proven promising for predicting response to different chemotherapy regimens, but the predictive value 
of radiomics features seems to be treatment dependent[95]. As shown by two systematic reviews[95,
121], most studies performed radiomics on CT rather than MRI. In patients treated with FOLFOX or 
FOLFIRI, low skewness and narrower standard deviation-both suggesting increased tumor homoge-
neity-were associated with a high response rate to chemotherapy[122]. Giannini et al[41] developed a 
radiomics signature to predict behaviour of individual CLRMs to targeted treatment in patients with 
HER2 amplification undergoing dual target therapy; in their model, the two most important radiomics 
features were difference in variance and homogeneity, thus again highlighting the role of texture 
analysis homogeneity of CLRM for assessing lesion diagnosis and outcome. Other studies investigated 
the role of radiomics in assessing tumor response after other targeted biologics and immunotherapeutic 
agents, such as regorafenib[117], and bevacizumab[116,48].

CONCLUSION
Nowadays much evidence has revealed that not all clinical risk features are equal, not all affect overall 
survival, and the decision to treat colorectal cancer with adjuvant chemotherapy should be assessed in 
multidisciplinary approach[123]. In this scenario, radiomics could play a pivotal role in colorectal cancer 
workup as an additional tool in clinical setting with the expectancy to help clinicians in identifying 
patients with high-risk disease. In particular, the main fields examined were the preoperative assess-
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ment of the differentiation between low- and high-grade colorectal cancer, and the prediction of nodal 
metastases[124-131]. The results achieved good and consistent efficiency in identifying high-risk clinical 
factors, reinforcing the idea that radiomics could play a central role in colorectal cancer patient workup. 
Nevertheless, radiomics has numerous shortcomings that make daily use extremely difficult. Among 
these, the lack of standardization and validation, poor reproducibility, and missing prospective 
multicentric studies represent the main drawbacks that must be overcome to introduce the radiomics 
approach to the clinical routine[7]. Further studies are needed to assess the performance of radiomics in 
stratifying patients with high-risk disease in patients with non-metastatic colorectal cancer who could 
benefit from adjuvant chemotherapy.
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