1,650 research outputs found

    On causality, unitarity and perturbative expansions

    Full text link
    We present a pedagogical case study how to combine micro-causality and unitarity based on a perturbative approach. The method we advocate constructs an analytic extrapolation of partial-wave scattering amplitudes that is constrained by the unitarity condition. Suitably constructed conformal mappings help to arrive at a systematic approximation of the scattering amplitude. The technique is illustrated at hand of a Yukawa interaction. The typical case of a superposition of strong short-range and weak long-range forces is investigated.Comment: 12 pages, 12 figure

    A unitary and causal effective field theory

    Full text link
    We report on a novel scheme based on the chiral Lagrangian. It is used to analyze pion-nucleon scattering, pion photoproduction, and nucleon Compton scattering. Subthreshold partial-wave amplitudes are calculated in chiral perturbation theory and analytically extrapolated with constraints imposed by electromagnetic-gauge invariance, causality and unitarity. Experimental quantities are reproduced up to energies s≃1300\sqrt{s}\simeq 1300 MeV in terms of the parameters relevant at order Q3Q^3.Comment: 4 pages, contribution to the proceedings of the MENU 2010 conference, May 31-June 4, 2010, Williamsburg VA, US

    Unitary and causal dynamics based on the chiral Lagrangian

    Full text link
    Pion-nucleon scattering, pion photoproduction, and nucleon Compton scattering are analyzed within a scheme based on the chiral Lagrangian. Partial-wave amplitudes are obtained by an analytic extrapolation of subthreshold reaction amplitudes computed in chiral perturbation theory, where the constraints set by electromagnetic-gauge invariance, causality and unitarity are used to stabilize the extrapolation. Experimental data are reproduced up to energies s≃1300\sqrt{s}\simeq 1300 MeV in terms of the parameters relevant at order Q3Q^3. A striking puzzle caused by an old photon asymmetry measurement close to the pion production threshold is discussed.Comment: Invited plenary talk at Chiral 10 Workshop, Valencia (Spain), June 21-24, 201

    Comparing 3C 120 jet emission at small and large scales

    Full text link
    Context. Important information on the evolution of the jet can be obtained by comparing the physical state of the plasma at its propagation through the broad-line region (where the jet is most likely formed) into the intergalactic medium, where it starts to significantly decelerate. Aims. We compare the constraints on the physical parameters in the innermost (≤\leq pc) and outer (≥\geq kpc) regions of the 3C 120 jet by means of a detailed multiwavelength analysis and theoretical modeling of their broadband spectra. Methods.The data collected by Fermi LAT, Swift and Chandra are analyzed together and the spectral energy distributions are modeled using a leptonic synchrotron and inverse Compton model, taking into account the seed photons originating inside and outside of the jet. The model parameters are estimated using the MCMC method. Results. The γ\gamma-ray flux from the inner jet of 3C 120 was characterized by rapid variation from MJD 56900 to MJD 57300. Two strong flares were observed on April 24, 2015 when, within 19.0 minutes and 3.15 hours the flux was as high as (7.46±1.56)×10−6photon cm−2 s−1(7.46\pm1.56)\times10^{-6}photon\:cm^{-2}\:s^{-1} and (4.71±0.92)×10−6photon cm−2 s−1(4.71\pm0.92)\times10^{-6}photon\:cm^{-2}\:s^{-1} respectively. The broadband emission in the quiet and flaring states can be described as SSC emission while IC scattering of dusty torus photons cannot be excluded for the flaring states. The X-ray emission from the knots can be well reproduced by IC scattering of CMB photons only if the jet is highly relativistic (since even when δ=10\delta=10 still Ue/UB≥80U_{\rm e}/U_B\geq80). These extreme requirements can be somewhat softened assuming the X-rays are from the synchrotron emission of a second population of very-high-energy electrons. Conclusions. We found that the jet power estimated at two scales is consistent, suggesting that the jet does not suffer severe dissipation, it simply becomes radiatively inefficient.Comment: Accepted for publication in Astronomy & Astrophysics. The abstract has been shortened to comply with the size limit set by arXi

    Three-nucleon force at large distances: Insights from chiral effective field theory and the large-N_c expansion

    Full text link
    We confirm the claim of Ref. [D.R. Phillips, C. Schat, Phys. Rev. C88 (2013) 3, 034002] that 20 operators are sufficient to represent the most general local isospin-invariant three-nucleon force and derive explicit relations between the two sets of operators suggested in Refs. [D.R. Phillips, C. Schat, Phys. Rev. C88 (2013) 3, 034002] and [H. Krebs, A.M. Gasparyan, E. Epelbaum, Phys.Rev. C87 (2013) 5, 054007]. We use the set of 20 operators to discuss the chiral expansion of the long- and intermediate-range parts of the three-nucleon force up to next-to-next-to-next-to-next-to-leading order in the standard formulation without explicit Delta(1232) degrees of freedom. We also address implications of the large-N_c expansion in QCD for the size of the various three-nucleon force contributions.Comment: 15 pages, 6 figure

    Lambda-N scattering length from the reaction gamma d -> K^+ Lambda n

    Full text link
    The perspects of utilizing the strangeness-production reaction gamma d -> K^+ Lambda n for the determination of the Lambda n low-energy scattering parameters are investigated. The spin observables that need to be measured in order to isolate the Lambda n singlet (1S0) and triplet (3S1) states are identified. Possible kinematical regions where the extraction of the Lambda n scattering lengths might be feasible are discussed.Comment: 8 pages, 4 figure
    • …
    corecore