4,144 research outputs found

    Comparison of measurements of the outer scale of turbulence by three different techniques

    Get PDF
    We have made simultaneous and nearly simultaneous measurements of L0, the outer scale of turbulence, at the Palomar Observatory by using three techniques: angle-of-arrival covariance measurements with the Generalized Seeing Monitor (GSM), differential-image-motion measurements with the adaptive-optics system on the Hale 5-m telescope, and fringe speed measurements with the Palomar Testbed Interferometer (PTI). The three techniques give consistent results, an outer scale of approximately 10-20 m, despite the fact that the spatial scales of the three instruments vary from 1 m for the GSM to 100 m for the PTI

    Association of Left Atrial Function Index with Atrial Fibrillation and Cardiovascular Disease: The Framingham Offspring Study

    Get PDF
    BACKGROUND: Left atrial (LA) size, a marker of atrial structural remodeling, is associated with increased risk for atrial fibrillation (AF) and cardiovascular disease (CVD). LA function may also relate to AF and CVD, irrespective of LA structure. We tested the hypothesis that LA function index (LAFI), an echocardiographic index of LA structure and function, may better characterize adverse LA remodeling and predict incident AF and CVD than existing measures. METHODS AND RESULTS: In 1786 Framingham Offspring Study eighth examination participants (mean age, 66+/-9 years; 53% women), we related LA diameter and LAFI (derived from the LA emptying fraction, left ventricular outflow tract velocity time integral, and indexed maximal LA volume) to incidence of AF and CVD on follow-up. Over a median follow-up of 8.3 years (range, 7.5-9.1 years), 145 participants developed AF and 139 developed CVD. Mean LAFI was 34.5+/-12.7. In adjusted Cox regression models, lower LAFI was associated with higher risk of incident AF (hazard ratio=3.83, 95% confidence interval=2.23-6.59, lowest [Q1] compared with highest [Q4] LAFI quartile) and over 2-fold higher risk of incident CVD (hazard ratio=2.20, 95% confidence interval=1.32-3.68, Q1 versus Q4). Addition of LAFI, indexed maximum LA volume, or LA diameter to prediction models for AF or CVD did not significantly improve model discrimination for either outcome. CONCLUSIONS: In our prospective investigation of a moderate-sized community-based sample, LAFI, a composite measure of LA size and function, was associated with incident AF and CVD. Addition of LAFI to the risk prediction models for AF or CVD, however, did not significantly improve their performance

    Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and 2 images

    Get PDF
    Voyager 1 and 2 narrow-angle frames were used to obtain displacements of features at resolutions of 130 km over time intervals of 1 Jovian rotation. The zonal velocity ū was constant to 1.5% during the 4 months between the Voyager 1 and 2 encounters. The latitudes of the zonal jet maxima (extrema of ū) are the same as inferred from earth-based observations extending over the past 80 years. The curvature of the velocity profile d²ū/dy² varies with latitudinal coordinate y in the range from −3β to +2β, where β is the planetary vorticity gradient. The barotropic stability criterion is violated at about 10 latitudes between ±60°. The eddy momentum flux variation with latitude (u'ν')(overbar) is positively correlated with dū/dy for both Voyager 1 and 2 data. The rate of conversion {K'K(overbar)} of eddy kinetic energy into zonal mean kinetic energy is in the range 1.5–3.0 Wm^(−2), for a layer 2.5 bar deep. The time constant for resupply of zonal mean kinetic energy by eddies is in the range 2–4 months, less than the interval between Voyager encounters. The rate of energy conversion is more than 10% of the total infrared heat flux for Jupiter, in contrast with earth where it is only 0.1% of the infrared heat flux. This hundred-fold difference suggests that the thermomechanical energy cycles are very different on the two planets

    N fertilizer and harvest impacts on bioenergy crop contributions to SOC

    Get PDF
    Below ground root biomass is infrequently measured and simply represented in models that predict landscape level changes to soil carbon stocks and greenhouse gas balances. Yet, crop-specific responses to N fertilizer and harvest treatments are known to impact both plant allocation and tissue chemistry, potentially altering decomposition rates and the direction and magnitude of soil C stock changes and greenhouse gas fluxes. We examined switchgrass (Panicum virgatum L.) and corn (Zea mays L.,) yields, below ground root biomass, C, N and soil particulate organic matter-C (POM-C) in a 9-year rain fed study of N fertilizer rate (0, 60, 120 and 180 kg N ha-1) and harvest management near Mead, NE, USA. Switchgrass was harvested with one pass in either August or postfrost, and for no-till (NT) corn, either 50% or no stover was removed. Switchgrass had greater below ground root biomass C and N (6.39, 0.10 Mg ha-1) throughout the soil profile compared to NT-corn (1.30, 0.06 Mg ha-1) and a higher below ground root biomass C:N ratio, indicating greater recalcitrant below ground root biomass C input beneath switchgrass. There was little difference between the two crops in soil POM-C indicating substantially slower decomposition and incorporation into SOC under switchgrass, despite much greater root C. The highest N rate decreased POM-C under both NT-corn and switchgrass, indicating faster decomposition rates with added fertilizer. Residue removal reduced corn below ground root biomass C by 37% and N by 48% and subsequently reduced POM-C by 22% compared to no-residue removal. Developing productive bioenergy systems that also conserve the soil resource will require balancing fertilization that maximizes above ground productivity but potentially reduces SOC sequestration by reducing below ground root biomass and increasing root and soil C decomposition

    N fertilizer and harvest impacts on bioenergy crop contributions to SOC

    Get PDF
    Below ground root biomass is infrequently measured and simply represented in models that predict landscape level changes to soil carbon stocks and greenhouse gas balances. Yet, crop-specific responses to N fertilizer and harvest treatments are known to impact both plant allocation and tissue chemistry, potentially altering decomposition rates and the direction and magnitude of soil C stock changes and greenhouse gas fluxes. We examined switchgrass (Panicum virgatum L.) and corn (Zea mays L.,) yields, below ground root biomass, C, N and soil particulate organic matter-C (POM-C) in a 9-year rain fed study of N fertilizer rate (0, 60, 120 and 180 kg N ha-1) and harvest management near Mead, NE, USA. Switchgrass was harvested with one pass in either August or postfrost, and for no-till (NT) corn, either 50% or no stover was removed. Switchgrass had greater below ground root biomass C and N (6.39, 0.10 Mg ha-1) throughout the soil profile compared to NT-corn (1.30, 0.06 Mg ha-1) and a higher below ground root biomass C:N ratio, indicating greater recalcitrant below ground root biomass C input beneath switchgrass. There was little difference between the two crops in soil POM-C indicating substantially slower decomposition and incorporation into SOC under switchgrass, despite much greater root C. The highest N rate decreased POM-C under both NT-corn and switchgrass, indicating faster decomposition rates with added fertilizer. Residue removal reduced corn below ground root biomass C by 37% and N by 48% and subsequently reduced POM-C by 22% compared to no-residue removal. Developing productive bioenergy systems that also conserve the soil resource will require balancing fertilization that maximizes above ground productivity but potentially reduces SOC sequestration by reducing below ground root biomass and increasing root and soil C decomposition

    Association of subclinical atherosclerosis with echocardiographic indices of cardiac remodeling: The Framingham Study

    Get PDF
    BACKGROUND: It is well established that coronary artery disease progresses along with myocardial disease. However, data on the association between coronary artery calcium (CAC) and echocardiographic variables are lacking. METHODS AND RESULTS: Among 2,650 Framingham Study participants (mean age 51 yrs, 48% women; 40% with CAC \u3e 0), we related CT-based CAC score to left ventricular (LV) mass index (LVMi), LV ejection fraction (LVEF), E/e\u27, global longitudinal strain (GLS), left atrial emptying fraction (LAEF), and aortic root diameter (AoR), using multivariable-adjusted generalized linear models. CAC score (independent variable) was used as log-transformed continuous [ln(CAC+1)] and as a categorical (0, 1-100, and \u3e /=101) variable. Adjusting for standard risk factors, higher CAC score was associated with higher LVMi and AoR (betaLVMI per 1-SD increase 0.012, betaAoR 0.008; P \u3c 0.05, for both). Participants with 1 \u3c /=CAC \u3c /=100 and those with CAC \u3e /=101 had higher AoR (betaAoR 0.013 and 0.020, respectively, P = 0.01) than those with CAC = 0. CAC score was not significantly associated with LVEF, E/e\u27, GLS or LAEF. Age modified the association of CAC score with AoR; higher CAC scores were associated with larger AoR more strongly in older ( \u3e 58 years; betaAoR0.0042;P \u3c 0.007) than in younger ( \u3c /=58 years) participants (betaAoR0.0027;P \u3c 0.03). CONCLUSIONS: We observed that subclinical atherosclerosis was associated with ventricular and aortic remodeling. The prognostic significance of these associations warrants evaluation in additional mechanistic studies

    Association of circulating ceramides with cardiac structure and function in the community: The Framingham Heart Study

    Get PDF
    Background A higher circulating plasma ceramide ratio (C16:0/C24:0) is associated with an increased risk of heart failure, even after accounting for standard risk factors including lipid markers. However, the pathobiological mechanisms that underlie this association are incompletely understood. We tested the hypothesis that plasma ceramide ratio (C16:0/C24:0) is associated with adverse cardiac remodeling in the community. Methods and Results We evaluated 2652 Framingham Offspring Study participants (mean age, 66±9 years; 55% women) who attended their eighth examination cycle and underwent routine echocardiography and liquid chromatography-tandem mass spectrometry-based assays for circulating ceramide concentrations. We used multivariable linear regression models to relate C16:0/C24:0 (independent variable) to the following echocardiographic measures (dependent variables; separate models for each): left ventricular mass, left ventricular ejection fraction, left atrial emptying fraction, left atrial end-systolic volume, E/e\u27 (a measure of left ventricular diastolic function), and left ventricular global circumferential and longitudinal strain by speckle-tracking echocardiography. In multivariable-adjusted analyses, higher C16:0/C24:0 per standard deviation increment was associated with lower left ventricular ejection fraction (0.991-fold change in left ventricular ejection fraction

    Integrated multiomics approach identifies calcium and integrin-binding protein-2 as a novel gene for pulse wave velocity

    Get PDF
    Background: Carotid-femoral pulse wave velocity (PWV) is an important measure of arterial stiffness, which is an independent predictor of cardiovascular morbidity and mortality. In this study, we used an integrated genetic, epigenetic and transcriptomics approach to uncover novel molecular mechanisms contributing to PWV. Methods and results: We measured PWV in 1505 healthy twins of European descendent. A genomewide association analysis was performed using standardized residual of the inverse of PWV. We identified one single-nucleotide polymorphism (rs7164338) in the calcium and integrin-binding protein-2 (CIB2) gene on chromosome 15q25.1 associated with PWV [beta = -0.359, standard error (SE) = 0.07, P = 4.8 x 10(-8)]. The same variant was also associated with increased CIB2 expression in leucocytes (beta = 0.034, SE = 0.008, P = 4.95 x 10(-5)) and skin (beta = 0.072, SE = 0.01, P = 2.35 x 10(-9)) and with hypomethylation of the gene promoter (beta = -.899, SE = 0.098, P = 3.63 x 10(-20)). Conclusion: Our data indicate that reduced methylation of the CIB2 promoter in individuals carrying rs7164338 may lead to increased CIB2 expression. Given that CIB2 is thought to regulate intracellular calcium levels, an increase in protein levels may prevent the accumulation of serum calcium and phosphate, ultimately slowing down the process of vascular calcification. This study shows the power of integrating multiple omics to discover novel cardiovascular mechanisms

    Twelve Years of Stover Removal Increases Soil Erosion Potential without Impacting Yield

    Get PDF
    Corn (Zea mays L.) stover (non-grain aboveground biomass) in the US Corn Belt is used increasingly for livestock grazing and co-feed and for cellulosic bioenergy production. Continuous stover removal, however, could alter long-term agricultural productivity by affecting soil organic C (SOC) and soil physical properties, indicators of soil fertility and erosion potential. In this study, we showed that 12 consecutive yr of 55% stover removal did not affect mean grain yields at any N fertilizer rate (4.5, 6.3, and 6.0 Mg ha−1 for 60, 120, and 180 kg N ha−1 yr−1, respectively) in a marginally productive, rainfed continuous corn system under no-till (NT). Although SOC increased in the top 30 cm of all soils since 1998 (0.54–0.79 Mg C ha−1 yr−1), stover removal tended to limit SOC gains compared with no removal. Near-surface soils (0–5-cm depth) were more sensitive to stover removal and showed a 41% decrease in particulate organic matter stocks, smaller mean weight diameter of dry soil aggregates, and lower abundance of water-stable soil aggregates compared with soils with no stover removal. Increasing N fertilizer rate mitigated losses in total water-stable aggregates in near-surface soils related to stover removal. Collectively, however, our results indicated soil structure losses in surface soils due to lower C inputs. Despite no effect on crop yields and overall SOC gains with time using NT management, annually removing stover for 12 yr resulted in a higher risk of wind and water erosion at this NT continuous corn site in the western Corn Belt
    corecore