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Temporal Trends in Pulse Pressure and Mean Arterial Pressure During
the Rise of Pediatric Obesity in US Children
Justin P. Zachariah, MD, MPH; Dionne A. Graham, PhD; Sarah D. de Ferranti, MD, MPH; Ramachandran S. Vasan, MD;
Jane W. Newburger, MD, MPH; Gary F. Mitchell, MD

Background-—Somatic growth in childhood is accompanied by substantial remodeling of the aorta. Obesity is associated with
increased aortic stiffness and flow and may interfere with aortic remodeling during growth. Wide pulse pressure (PP) indicates
mismatch between aortic impedance and pulsatile flow and increases risk for future systolic hypertension and cardiovascular
disease (CVD). We hypothesized that the rise of pediatric obesity would be associated with a temporal trend to higher PP.

Methods and Results-—We analyzed demographic, anthropometric, and blood pressure (BP) data for 8- to 17-year-old children
(N=16 457) from the cross-sectional National Health and Nutrition Examination Surveys (NHANES) for 1976 through 2008.
Multivariable adjusted survey regression was used to examine temporal trends in PP and mean arterial pressure (MAP) and the
relation to obesity. Across this period, unadjusted PP was higher (0.29 mm Hg/y, 95% CI 0.26 to 0.33 mm Hg/y; P<0.0001), while
MAP was lower (�0.24 mm Hg/y, 95% CI �0.27 to �0.20 mm Hg/y; P<0.0001) across examinations. Adjusting for body mass
index partially attenuated the temporal trend for PP by 32% (P<0.0001). Obesity amplified the relation between taller height and
higher PP (from 0.23 [95% CI 0.19 to 0.28] to 0.27 [95% CI 0.21 to 0.34] mm Hg/cm height in boys and from 0.08 [95% CI 0.04 to
0.13] to 0.22 [95% CI 0.13 to 0.31] mm Hg/cm height in girls; P<0.01 for both).

Conclusions-—PP has increased during the rise of pediatric obesity. Higher PP may indicate mismatch between aortic diameter,
wall stiffness, and flow in obese children during a period of rapid somatic growth when the aorta is already under considerable
remodeling stress. ( J Am Heart Assoc. 2014;3:e000725 doi: 10.1161/JAHA.113.000725)
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E xcess weight in children during the past 3 decades is
associated with increasing prevalence of dyslipidemia,

type 2 diabetes mellitus, and hypertension.1–3 Despite
dramatic increases in pediatric excess weight, the National
Health and Nutrition Examination Survey (NHANES) 2003–
2006 demonstrated that the prevalence of elevated blood
pressure (BP), as defined against fixed historic norms, had
increased only modestly.2 At the same time, recent reports
demonstrate high proportions of young adults with elevated

BP and increasing BP-related cardiovascular disease (CVD)
outcomes, suggesting a transition to higher BP and higher risk
during late childhood or early adulthood.4,5

BP is commonly analyzed as systolic (SBP) and diastolic
(DBP) values. However, alternative decomposition into pulse
pressure (PP; SBPminus DBP) andmean arterial pressure (MAP;
commonly estimated as DBP plus PP/3) equally predict
incident CVD events and may provide additional insight
into the underlying pathophysiology of high BP.6 PP is
determined by large artery stiffness and flow pulsatility,
whereas MAP is determined by small resistance artery function
and cardiac output.6 Wide PP is a precursor of isolated systolic
hypertension and predicts incident CVD.6–10 In a study of urban
children, isolated systolic elevation, a form of wide PP, was the
most common form of elevated BP in children and was more
common in obese children.11 Because arterial stiffness is a
determinant of PP and predicts hypertension, increased PP in
children may reflect pathological vascular remodeling and may
precipitate further adverse vascular remodeling and incident
hypertension.12–14 Since excess weight in childrenmay cause a
mismatch between pulsatile blood flow and aortic size
and between cardiac output and peripheral resistance, we
hypothesized that the rise in pediatric excess weight would
be accompanied by a temporal increase in PP and MAP. The
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population-level relation between obesity and PP and MAP in
children is not well described. This study examines the temporal
trends for PP and MAP in children of the United States from
NHANES II (1976–1984) through NHANES 2007–2008, eluci-
dates the contribution of obesity to observed temporal trends,
and evaluates the effect of obesity on the sex-specific
physiological relations of PP and MAP with height and age.

Methods

NHANES
The NHANES provide cross-sectional data representative of
the civilian, noninstitutionalized population of the United
States. We retrieved data from the National Center for Health
Statistics at the Centers for Disease Control and Prevention for
all children 8 to 17 years of age in each survey from NHANES II
(1976–1984) through NHANES 2007–2008. Since 1999, the
eligible survey sample has been determined by a multistage
probability sampling design and includes oversampling of the
12- to 19-year-age range, non-Hispanic blacks, and Mexican
Americans.15 We collected data for sex, age, race/ethnicity,
weight, height, waist circumference (WC), heart rate, SBP, and
DBP fromeach survey. Participants withmissing data orwithout
at least 2 SBP and DBP measurements were excluded, except
for NHANES II, in which only 1 BP value was obtained. On the
basis of missing data, we excluded 526 participants from
NHANES II, 1668 from NHANES III, 280 from 1999–2000, 331
from 2001–2002, 488 from 2003–2004, 461 from NHANES
2005–2006, and 361 from NHANES 2007–2008. This project
was deemed exempt from formal review by the Boston
Children’s Hospital Institutional Review Board.

Measurements
Auscultatory BP measurements are obtained during the
physician examination component of the NHANES visit. In
NHANES, the SBP is defined by the pressure where tapping
begins (Korotkoff phase 1), while DBP is the pressure where
tapping ceases (Korotkoff phase 5). PP was calculated as the
difference between SBP and DBP. MAP was calculated as one
third of PP added to DBP. Beginning with NHANES III, the
examining physicians were trained in a standardized mea-
surement protocol, were provided a full range of BP cuff sizes,
and were supported by quality control oversight.15 For
NHANES II, only standard adult and pediatric cuffs were
available and no formal oversight process was in place.
Subsequently, appropriate BP cuffs were selected to ensure
that the bladder length encircled 50% to 80% of the mid-arm
circumference. Height was measured using a fixed stadiom-
eter with vertical backboard and movable headboard with
participants standing. Weight was measured on a digital scale

with participant clothing limited to underwear, a disposable
gown, and foam slippers. WC was measured at the level of the
pelvic ilium. WC was not measured at NHANES II (1976–1984).
Bodymass index (BMI) was calculated as kilograms (weight) per
meters squared (height). Elevated BP as a category was defined
to be above the 95% percentile threshold according to the age,
sex, and height referenced normative tables contained in the
Fourth Report on Diagnosis, Evaluation, and Treatment of High
Blood Pressure in Children and Adolescents.16 To account for
smoking, we extracted data on the survey questions HFF1 in
NHANES III, SMD410 in subsequent NHANES, and serum
cotinine levels. Overall, only 101 participants had valid entries
regarding antihypertensivemedications and sowere included in
our analysis without adjustment.

Statistical Analysis
Primary analyses used survey linear regression to model
differences in PP over time. Survey weighting was applied
according to National Center for Health Statistics guide-
lines.17 The primary outcome of interest was PP, with MAP as
the secondary outcome of interest. The primary predictor was
examination year as calculated by the number of years from
midpoint of NHANES II to midpoint of each subsequent
survey. Adjustment covariates in the first step included age
and sex. Height, heart rate, and race/ethnicity were added on
the second step and MAP on the third step to account for the
effect of distending pressure on arterial stiffness. Finally, BMI
was added as a continuous variable. For MAP, a parallel
analysis was performed with examination year as the primary
predictor, with age and sex on the first step; height, heart
rate, and race/ethnicity on the second step; and continuous
BMI on the third step. As a sensitivity analysis in the PP and
MAP model sets, we separately examined BMI and WC as
categorical obese versus nonobese, as well as continuous
measures. BMI obesity was defined as BMI above the age- and
sex-specific 95th percentile as published in Centers for
Disease Control and Prevention growth charts.18 WC obesity
was defined as greater than the age- and sex-specific 90th
percentile.19 Use of WC helps address cases where high BMI
may reflect a difference in lean muscle mass. Given the
concerns about BP measurement quality control in NHANES II
and the large amount of missing data in NHANES III,
sensitivity analyses were performed by including only the
NHANES 1999–2008 datasets. In post-hoc analyses, smoking
was addressed by additional adjustment for the binary answer
to a question on smoking in the home and then for serum
cotinine level as a continuous variable.

In secondary analyses, participant data from all the sur-
veys were pooled. Survey regression models examined the
association between PP or MAP and chronological age or
height. Additional covariates included sex, heart rate, and
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race/ethnicity; MAP was also included in PP models. Age–
obesity and height–obesity interaction terms were used
to identify effect modification of the relation between PP and
age or height, respectively, by the presence of dichotomous BMI
obesity status. To maintain consistency with a significant
examination year–sex interaction term in the MAP temporal
trend, pooled-sex and sex-specific analyses are reported
across all model results. Additionally, we analyzed the effect
of race by including a race–NHANES year interaction term.
Central tendencies are reported as mean with SEM. SAS 9.2
(IBM) was used for statistical analyses. P values <0.05 were
deemed significant.

Results

Sample Characteristics
Sample characteristics are detailed in Table 1. The proportion
of children with obesity (defined by BMI) more than tripled

between NHANES II and NHANES 2007–2008. Average height
increased and heart rate fell modestly. While the proportion of
non-Hispanic blacks remained stable, proportions of Mexican
Americans more than tripled, whereas those of non-Hispanic
whites fell across the serial surveys. Correlations between
relevant variables are listed in Table 2.

Temporal Trends in BP and Obesity
During the study period, unadjusted PP was progressively
higher with time, particularly since 1999 (Figure 1, Table 3).
In contrast, MAP was progressively lower, although the
reduction was less marked from 1999 to 2008 (Table 4). The
PP and MAP time trends persisted in multivariable-adjusted
models (Tables 3 and 4). The opposing trends in PP and MAP
resulted in flat SBP over the entire study period (�0.03 mm
Hg/y, 95% CI 0.08 to 0.01 mm Hg/y; P=0.16), with a
slight increase after 1999 (0.18 mm Hg/y, 95% CI 0.02 to
0.35 mm Hg/y; P=0.03) (Figure 2). Unadjusted sex-specific

Table 1. Sample Characteristics for Children 8 to 17 Years of Age

NHANES
1976–1984 (NHANES
II)

1988–1994 (NHANES
III) 1999–2000 2001–2002 2003–2004 2005–2006 2007–2008

N examined 3084 3374 2298 2380 1909 1991 1421

N weighted, millions 37.5 27.7 16.5 20.6 33.0 34.6 34.9

Age, y 12.8�0.04 12.1�0.08 12.6�0.1 12.6�0.09 12.9�0.14 12.9�0.07 12.8�0.12

Girls, % 49.1 49.3 49 49.5 51.1 49.9 49.6

Non-Hispanic white, % 70.2 68.3 56.6 63.6 63.4 60.7 60.1

Non-Hispanic black, % 13.8 14.5 15.6 13.7 14.5 14.6 14

Hispanic, % 7.1 8.3 21.6 16.5 17 16.3 19.9

Other race/ethnicity, % 8.9 9 6.2 6.2 5.2 8.5 6

Height, cm 154.8�0.3 154.2�0.4 155.4�0.5 155.7�0.4 157.4�0.7 156.9�0.6 156.9�0.6

Weight, kg 48.4�0.3 49.8�0.6 53�0.6 53.1�0.5 55.6�0.9 54.6�0.8 55.4�0.8

BMI, kg/m2 19.6�0.1 20.4�0.2 21.3�0.2 21.3�0.2 21.9�0.3 21.6�0.2 21.9�0.2

BMI >95th percentile, % 6 12 17 16 19 18 21

Waist circumference, cm n.a. 70.8�0.5 74.5�0.5 74.7�0.4 76.7�0.7 75.9�0.6 76.4�0.6

Waist circumference >90th percentile,
%

n.a. 12 18 17 23 19 22

Heart rate, bpm 83�0.3 79�0.7 78�0.7 79�0.5 80�0.4 80�0.6 80�0.4

Systolic BP, mm Hg 109�0.6 104�0.4 106�0.3 106�0.4 107�0.5 108�0.5 107�0.6

Diastolic BP, mm Hg 69�0.4 58�0.3 62�0.4 60�0.4 58�0.4 59�0.6 59�0.5

Hypertension, % 5.9 0.9 0.7 0.8 1.6 1.7 1.8

Mean arterial pressure, mm Hg 82�0.5 73�0.3 77�0.3 75�0.3 75�0.4 75�0.5 75�0.5

Pulse pressure, mm Hg 40�0.4 46�0.4 45�0.3 46�0.7 49�0.6 49�0.6 48�0.6

PP >50 mm Hg, % 14 34 29 33 42 43 41

Elevated BP with PP >50 mm Hg, % 64 95 99 100 100 98 93

Data are given as mean�SEM or as proportion. Waist circumference was not measured in 1976–1984 (NHANES II). BMI indicates body mass index; BP, blood pressure; NHANES, National
Health and Nutrition Examination Surveys; PP, pulse pressure.
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PP and MAP trends are shown in Figure 3. Fully adjusted
models showed no sex difference in PP trends (�0.04, 95% CI
�0.09 to 0.01; P=0.13), but MAP did have a significant sex
interaction (0.09, 95% CI 0.06 to 0.12; P<0.0001). Of children
with elevated BP as defined by the Fourth Report on
Diagnosis, Evaluation, and Treatment of High Blood Pressure
in Children and Adolescents, 81% had PP wider than
50 mm Hg (Table 1).

Greater BMI was associated strongly with higher PP (0.66
mm Hgper 1 kg/m2, 95%CI 0.59 to 0.73mm Hgper 1 kg/m2;
P<0.0001) and higher MAP (0.41 mm Hg per 1 kg/m2, 95% CI
0.37 to 0.46 mm Hg per 1 kg/m2; P<0.0001). PP and MAP
relations with BMI were comparable after exclusion of NHANES
II and III (data not shown). Adjusting the PP9timemodel for BMI
attenuated the temporal trend by 31% in girls and 29% in boys,
although a significant residual temporal trend persisted after all
adjustments (Table 3). On the other hand, adjustment for BMI
steepened the falling trend inMAP by 11% in girls and 7% in boys
over the entire study period. The PP and MAP temporal trends
were not substantially affected by further adjustment for active
or passive smoking. Race/ethnicity did not appear to modify
the temporal trends (interaction term P value 0.5 for PP and 0.3
for MAP). The use of WC instead of BMI yielded similar results
(fully adjusted PP model r2 for continuous BMI 0.21, and for
continuous WC, 0.22).

The Effects of Obesity on PP and MAP Relations
With Height and Age
In multivariable-adjusted models, PP was higher with greater
height in girls and boys, although the relation was more
pronounced in boys (Table 5 and Figure 4). The PP9height
relation was augmented comparably in boys and girls who
were obese (based on BMI). MAP was comparably higher with
greater height in girls and boys (Table 5, Figure 5). In obese
children, the relation between MAP and height was diminished
because of relatively higher MAP in shorter obese children.
There was no relation between age and PP in obese girls and
a marginal inverse trend in nonobese girls. In boys, PP was
higher with age and the relation was augmented by obesity.
MAP was higher with age in girls and boys, although the
relation between MAP and age was diminished because of
relatively higher MAP at an earlier age in obese children.

Discussion
Consistent with our hypothesis regarding the effect of excess
weight on aortic function during childhood, PP has increased
substantially during the past 3 decades in parallel with the
increasing prevalence of childhood obesity. A substantial
proportion of the temporal trend in PP is attributable to

Table 2. Correlation Matrix for Pulse Pressure and Mean Arterial Pressure

Age Female Race/Ethnicity Height Heart Rate Body Mass Index MAP

PP 0.10 �0.14 �0.04 0.17 �0.08 0.26 �0.26

MAP 0.34 �0.05 0.06 0.36 0.05 0.23 ―

Values listed are Pearson correlation coefficients. P values for all <0.0001. PP indicates pulse pressure; MAP, mean arterial pressure.

A

B

Figure 1. Temporal trends in pooled sex PP, MAP (diamonds),
and obesity prevalence (open circles) in children. Left y-axes are
(A) PP and (B) MAP in millimeters mercury, and the right y-axis is
the proportion with obese BMI. Values are plotted against the
midpoint of each NHANES along the x-axis. BMI indicates body
mass index; MAP, mean arterial pressure; NHANES, National
Health and Nutrition Examination Surveys; PP, pulse pressure.
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Table 3. Adjusted Differences in Pulse Pressure per Examination Year

Model r2 Pooled Sex Boys Girls

All NHANES

Age-sex 0.09 0.29 0.34 0.25

(0.26 to 0.33) (0.30 to 0.38) (0.20 to 0.29)

Multivariable 0.10 0.28 0.32 0.24

(0.25 to 0.32) (0.28 to 0.37) (0.19 to 0.29)

Multivariable+MAP 0.16 0.19 0.21 0.16

(0.14 to 0.23) (0.16 to 0.26) (0.11 to 0.22)

Multivariable+MAP+BMI 0.21 0.13 0.15 0.11

(0.09 to 0.18) (0.10 to 0.20) (0.06 to 0.16)

1999–2008

Age-sex 0.05 0.47 0.46 0.48

(0.28 to 0.66) (0.24 to 0.67) (0.21 to 0.75)

Multivariable 0.06 0.47 0.44 0.49

(0.28 to 0.66) (0.23 to 0.66) (0.22 to 0.75)

Multivariable+MAP 0.16 0.37 0.31 0.42

(0.17 to 0.56) (0.09 to 0.53) (0.16 to 0.56)

Multivariable+MAP+BMI 0.23 0.33 0.27 0.39

(0.15 to 0.51) (0.07 to 0.47) (0.15 to 0.64)

Regressioncoefficientswith95%CIs inparentheses indicatemm Hgchange inpulsepressureperyear. “AllNHANES” indicates regressionmodel results fromNHANES1976–2008examinations;
“1999–2008,” regressionmodel results from1999–2008examinations;model r2, cumulativeproportionof variance inPPattributable toall variables includedateachstep;model1, pooledmodel
was adjusted for age and sex (sex-specific models were adjusted only for age); model 2, multivariable adjustment included age, sex, height, heart rate, and race/ethnicity; model 3,
multivariable+MAPindicatestheadditionofMAPtomodel2variables;model4,multivariable+MAP+BMI indicatestheadditionofBMItovariables inmodel3.P<0.0001forallcells in“AllNHANES.”
P≤0.01 for all cells in “1999–2008.” PP indicates pulse pressure; NHANES, National Health and Nutrition Examination Surveys; MAP, mean arterial pressure; BMI, body mass index.

Table 4. Adjusted Differences in Mean Arterial Pressure per Examination Year

Model r2 Pooled Sex Boys Girls

All NHANES

Age-sex 0.19 �0.24 �0.28 �0.20

(�0.27 to �0.20) (�0.31 to �0.24) (�0.24 to �0.16)

Multivariable 0.23 �0.24 �0.28 �0.19

(�0.27 to �0.20) (�0.32 to �0.25) (�0.23 to �0.15)

Multivariable+BMI 0.24 �0.26 �0.30 �0.21

(�0.29 to �0.22) (�0.34 to �0.26) (�0.25 to �0.17)

1999–2008

Age-sex 0.12 �0.17 �0.21 �0.12*

(�0.30 to �0.04) (�0.35 to �0.08) (�0.30 to 0.06)

Multivariable 0.16 �0.18 �0.25 �0.12*

(�0.31 to �0.05) (�0.38 to �0.11) (�0.29 to 0.05)

Multivariable+BMI 0.17 �0.19 �0.25 �0.13*

(�0.32 to �0.06) (�0.39 to �0.12) (�0.30 to 0.04)

Regression coefficients with 95% CIs in parentheses indicate mm Hg change in MAP per year. “All NHANES” indicates regression model results from NHANES 1976–2008 examinations;
“1999–2008,” regression model results from 1999–2008 examinations; model r2, proportion of variance in MAP over time accounted for by variables added at each step; model 1, pooled
model was adjusted for age and sex (sex-specific models were adjusted only for age); model 2, multivariable adjustment included age, sex, height, heart rate, and race/ethnicity; model 3,
multivariable+BMI indicates the addition of BMI added to variables in model 2. P<0.0001 for all cells in “All NHANES.” P≤0.01 for all cells in “1999–2008” except where indicated *. MAP
indicates mean arterial pressure; NHANES, National Health and Nutrition Examination Surveys; BMI, body mass index.
*P>0.1.

DOI: 10.1161/JAHA.113.000725 Journal of the American Heart Association 5

Pediatric PP and MAP in NHANES Zachariah et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



obesity, suggesting either that common factors contributed to
a parallel increase in obesity and PP or that the increase in
obesity contributed to the increase in PP. Obesity amplified
the relation between height and PP in both sexes. Obesity
augmented the relation between PP and age in boys but not in
girls. Wider PP was very common in children with elevated
BP. In light of recent data showing that higher PP in a
normotensive individual predicts future hypertension,14 our
present observations suggest that the pediatric obesity
epidemic may increase the burden of systolic hypertension
through wider PP.14

Obese children have increased blood volume, larger stroke
volume, and higher steady and pulsatile flow, which increases
PP.20 Large arteries accommodate higher ambient flow by
remodeling to a larger diameter.21–24 During childhood, the
aorta remodels to accommodate somatic growth. After the

first few years of life, when elastic fiber production is active,
subsequent aortic lumen enlargement requires extracellular
matrix remodeling around a fixed content of elastic fibers,
which increases load on elastin and, hence, may transfer load
from elastin to much stiffer collagen.21,25,26 A larger diameter
reduces impedance to pulsatile flow and helps maintain PP in
a physiological range but also amplifies mean and pulsatile
tension on the aortic wall. Increased wall tension can lead to
increased wall stiffness through elastin fragmentation and
deposition of stiffer matrix components.21 Therefore, higher
PP likely represents a combination of greater aortic wall
stiffness and higher flow that has exceeded capacity for
outward aortic remodeling.27–29 Previous work shows the
consequence of repeated cycles of wide PP is, in turn, more
arterial stiffness and implies that central adiposity is a key
determinant.9,10

A

B

Figure 2. Sex-specific temporal trends in (A) SBP, (B) DBP, and
obesity are plotted against the midpoint year of each NHANES
period. Separate curves are plotted for boys (open squares), girls
(solid triangles), and obesity (open circles) for SBP or DBP on the
left y-axis and proportion obese on the right y-axis. BMI indicates
body mass index; DBP, diastolic blood pressure; NHANES,
National Health and Nutrition Examination Surveys; SBP, systolic
blood pressure.

A

B

Figure 3. Sex-specific temporal trends in PP (A), MAP (B), and
obesity are plotted against the midpoint year of each NHANES
period. Separate curves are plotted for boys (open squares), girls
(solid triangles), and obesity (open circles) for PP or MAP on the
left y-axis and proportion obese on the right y-axis. BMI indicates
body mass index; MAP, mean arterial pressure; NHANES, National
Health and Nutrition Examination Surveys; PP, pulse pressure.
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Table 5. Association Between Height or Age and Pulse Pressure or Mean Arterial Pressure: Effect Modification by Obesity

PP MAP

Boys Girls Boys Girls

Height, mm Hg/cm

Nonobese BMI 0.23* 0.08† 0.12* 0.14*

(0.19 to 0.28) (0.04 to 0.13) (0.09 to 0.14) (0.11 to 0.17)

Obese BMI 0.27* 0.22* 0.07‡ 0.05

(0.21 to 0.34) (0.13 to 0.31) (0.02 to 0.11) (�0.02 to 0.12)

Age, mm Hg/y

Nonobese BMI 0.64* �0.20§ 0.73* 0.76*

(0.42 to 0.88) (�0.40 to �0.01) (0.55 to 0.91) (0.64 to 0.87)

Obese BMI 0.90* 0.29 0.48† 0.55*

(0.56 to 1.24) (�0.09 to 0.68) (0.21 to 0.76) (0.32 to 0.77)

Regression coefficients with 95% CIs in parentheses indicate mm Hg increase or decrease in PP or MAP per centimeter increase in height or per year of age. Obese BMI is defined as BMI
>95% referenced to age and sex. PP model is sex specific and adjusted for heart rate, race/ethnicity, MAP, and age or height as appropriate. MAP model is sex specific and adjusted for
heart rate, race/ethnicity, and age or height as appropriate. The height9 or age9BMI interaction term was ≤0.01 for PP and MAP. Three-way interaction terms for height or age with
obesity and sex were not significant for all model sets. PP indicates pulse pressure; MAP, mean arterial pressure; BMI, body mass index.
*P<0.0001, †P<0.001, ‡P=0.004, §P=0.04.

A

B

C

D

Figure 4. The sex-specific relations between pulse pressure (PP) and height or age for boys (A and B) and girls
(C and D). PP in millimeters mercury is plotted against height in 10-cm increments or age in years for
nonobese boys (open squares), obese boys (filled squares), nonobese girls (open triangles), and obese girls (filled
triangles).
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Obesity amplified the relation between PP and height,
suggesting that a marked increase in pulsatile flow in the face
of the combination of rapid somatic growth and excess
weight may have overwhelmed the capacity of the aorta to
remodel, leading to an increase in pressure pulsatility.
Alternatively, obesity may interfere with matching between
aortic diameter and flow, possibly because of stiffening of the
aortic wall or an adverse effect on endothelial function that
limits transduction of the flow stimulus that drives adaptive
remodeling.24,27

Obesity modestly amplified the relation between PP and
age in boys but not in girls. A lower PP slope with age in girls
and less PP accentuation with obesity during growth and
maturation may be consistent with more effective compen-
satory remodeling in girls, presumably because of sex-related
differences in somatic growth during adolescence. The
present observations extend sex-specific relations of pulsatile
load with age and height to pediatric age groups.23,30 PP in
young adult women is lower than that in young adult men, but
after 50 years of age, PP accelerates in women to meet and

exceed PP in men.13 The roots of the sex difference in our
analyses are unclear. Puberty-related hormonal status could
play a role as menarche appears to be occurring at earlier
ages,31,32 but NHANES did not capture pubertal status at
each examination.

The trends in MAP are complex. Despite the expected and
observed association between higher BMI and higher MAP,
MAP has decreased over the study period; therefore, obesity
cannot account for the MAP trend. In both sexes, obesity
attenuated the relations between height or age and MAP. In
theory, countervailing trends in pressure pulsatility versus
small artery resistance could occur if increased cross-
sectional arterial area were developed in growing, developing
children to dissipate the excess pulsatile energy. Angiogenic
growth factors are associated with pulsatile and steady state
parameters in adults.33 Additionally, the change from 4th to
5th Korotkoff sound and initiation of quality controls from
NHANES II to NHANES III may have contributed to the
decline in DBP and MAP between those examinations.34

However, a very modest downward trend in MAP persisted

A

B

C

D

Figure 5. The sex-specific relations between mean arterial pressure (MAP) and height or age for boys (A and B)
and girls (C and D) stratified by obesity status. MAP in millimeters mercury is plotted against height in 10 cm
increments or age in years for not obese boys (open squares), obese boys (filled squares), not obese girls (open
triangles), and obese girls (filled triangles).
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after excluding NHANES II from the analysis. Our analysis
does not support a contribution from temporal trends in
smoking.35–38

Opposite temporal trends in PP and MAP extend the
results of several recent reports in pediatric and adult
populations of stable or decreasing SBP and DBP despite
increasing obesity and contradict another report suggesting a
modest increase in elevated BP prevalence.39–45 In light of the
excess risk associated with higher PP at any given SBP in
adults, the PP trend may signal higher risk for future
hypertension and CVD end points as these children transition
into adulthood. Recent reports of a 19% prevalence of
elevated BP in a large cohort of 25- to 34-year-old persons
underscore the possibility that children represented in
previous NHANES examinations are beginning to experience
adverse consequences of elevated PP.4 Other work highlights
a temporal increase in stroke hospitalization in 15- to 34-year-
olds, more of whom have hypertension.5 In adults, incident
stroke risk is higher in those individuals with elevated PP.7,8,46

Previous work in younger adults that minimized the impor-
tance of PP on CVD risk may not be applicable to modern
children and adolescents because the effects of persistent
exposure to higher obesity-related PP during somatic growth
have not been studied.46–48

Limitations
The NHANES datasets are cross-sectional and, therefore, do
not permit causal inferences regarding longitudinal changes
in BP within individuals and prevent an analysis of the effects
of age of onset or duration of exposure to obesity. However,
the NHANES are nationally representative and thus uniquely
suited to describe temporal trends in US children. Also,
obesity does track moderately through childhood.49–51 We
avoid the ecological fallacy by using survey regression on
individual-level data that inherently account for distribution
differences within populations as opposed to modeling
central measures. We considered the effect of inappropriate
cuff sizes as previously enumerated34 by performing a
sensitivity analysis that included only those participants at
each NHANES year with BP measured using appropriate cuff
sizes and found similar results for MAP and PP. We tested
cycle-specific artifacts, like Korotkoff 4 versus Korotkoff 5 for
DBP or end-digit preferences as heterogeneity in the BMI
relation to PP or MAP.52 In sensitivity analyses using all
participants pooled, we found no effect modification by
examination cycle of the relation between BMI and PP. There
was an interaction for MAP, underscoring that after exclusion
of NHANES II and III, the negative MAP trend persisted only in
boys (results not shown). Overall, the consistency in results
under a variety of sensitivity analyses supports the validity of
our findings.

Conclusion
During the period of rising obesity in US children from 1976 to
2008, PP has increased. Battling obesity and elucidating
mechanistic links between obesity and aortic function may
offer an opportunity to prevent the potentially severe adverse
sequelae of prevalent elevated pressure pulsatility, including
future hypertension and consequent CVD.
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