281 research outputs found

    Medication and Dietary Supplement Interactions among a Low-Income, Hospitalized Patient Population Who Take Cardiac Medications

    Get PDF
    Purpose. To identify characteristics associated with the use of potentially harmful combinations of dietary supplements (DS) and cardiac prescription medications in an urban, underserved, inpatient population. Methods. Cardiac prescription medication users were identified to assess the prevalence and risk factors of potentially harmful dietary supplement-prescription medication interactions (PHDS-PMI). We examined sociodemographic and clinical characteristics for crude (χ2 or t-tests) and adjusted multivariable logistic regression associations with the outcome. Results. Among 558 patients, there were 121 who also used a DS. Of the 110 participants having a PHDS-PMI, 25% were asked about their DS use at admission, 75% had documentation of DS in their chart, and 21% reported the intention to continue DS use after discharge. A multivariable logistic regression model noted that for every additional medication or DS taken the odds of having a PHDS-PMI increase and that those with a high school education are significantly less likely to have a PHDS-PMI than those with a college education. Conclusion. Inpatients at an urban safety net hospital taking a combination of cardiac prescription medications and DS are at a high risk of harmful supplement-drug interactions. Providers must ask about DS use and should consider the potential for interactions when having patient discussions about cardiac medications and DS

    A non-Markovian quantum trajectory approach to radiation into structured continuum

    Get PDF
    We present a non-Markovian quantum trajectory method for treating atoms radiating into a reservoir with a non-flat density of states. The results of an example numerical simulation of the case where the free space modes of the reservoir are altered by the presence of a cavity are presented and compared with those of an extended system approach

    Non-Markovian homodyne-mediated feedback on a two-level atom: a quantum trajectory treatment

    Get PDF
    Quantum feedback can stabilize a two-level atom against decoherence (spontaneous emission), putting it into an arbitrary (specified) pure state. This requires perfect homodyne detection of the atomic emission, and instantaneous feedback. Inefficient detection was considered previously by two of us. Here we allow for a non-zero delay time τ\tau in the feedback circuit. Because a two-level atom is a nonlinear optical system, an analytical solution is not possible. However, quantum trajectories allow a simple numerical simulation of the resulting non-Markovian process. We find the effect of the time delay to be qualitatively similar to that of inefficient detection. The solution of the non-Markovian quantum trajectory will not remain fixed, so that the time-averaged state will be mixed, not pure. In the case where one tries to stabilize the atom in the excited state, an approximate analytical solution to the quantum trajectory is possible. The result, that the purity (P=2Tr[ρ2]1P=2{\rm Tr}[\rho^{2}]-1) of the average state is given by P=14γτP=1-4\gamma\tau (where γ\gamma is the spontaneous emission rate) is found to agree very well with the numerical results.Comment: Changed content, Added references and Corrected typo

    Non-Markovian quantum trajectories for spectral detection

    Full text link
    We present a formulation of non-Markovian quantum trajectories for open systems from a measurement theory perspective. In our treatment there are three distinct ways in which non-Markovian behavior can arise; a mode dependent coupling between bath (reservoir) and system, a dispersive bath, and by spectral detection of the output into the bath. In the first two cases the non-Markovian behavior is intrinsic to the interaction, in the third case the non-Markovian behavior arises from the method of detection. We focus in detail on the trajectories which simulate real-time spectral detection of the light emitted from a localized system. In this case, the non-Markovian behavior arises from the uncertainty in the time of emission of particles that are later detected. The results of computer simulations of the spectral detection of the spontaneous emission from a strongly driven two-level atom are presented

    Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heterosis is the superior performance of F<sub>1 </sub>hybrid progeny relative to the parental phenotypes. Maize exhibits heterosis for a wide range of traits, however the magnitude of heterosis is highly variable depending on the choice of parents and the trait(s) measured. We have used expression profiling to determine whether the level, or types, of non-additive gene expression vary in maize hybrids with different levels of genetic diversity or heterosis.</p> <p>Results</p> <p>We observed that the distributions of better parent heterosis among a series of 25 maize hybrids generally do not exhibit significant correlations between different traits. Expression profiling analyses for six of these hybrids, chosen to represent diversity in genotypes and heterosis responses, revealed a correlation between genetic diversity and transcriptional variation. The majority of differentially expressed genes in each of the six different hybrids exhibited additive expression patterns, and ~25% exhibited statistically significant non-additive expression profiles. Among the non-additive profiles, ~80% exhibited hybrid expression levels between the parental levels, ~20% exhibited hybrid expression levels at the parental levels and ~1% exhibited hybrid levels outside the parental range.</p> <p>Conclusion</p> <p>We have found that maize inbred genetic diversity is correlated with transcriptional variation. However, sampling of seedling tissues indicated that the frequencies of additive and non-additive expression patterns are very similar across a range of hybrid lines. These findings suggest that heterosis is probably not a consequence of higher levels of additive or non-additive expression, but may be related to transcriptional variation between parents. The lack of correlation between better parent heterosis levels for different traits suggests that transcriptional diversity at specific sets of genes may influence heterosis for different traits.</p

    Health literacy and complementary and alternative medicine use among underserved inpatients in a safety net hospital

    Get PDF
    Little is known about the relationship between health literacy and complementary and alternative medicine (CAM) use in low-income racially diverse patients. The authors conducted a secondary analysis of baseline data from 581 participants enrolled in the Re-Engineered Discharge clinical trial. The authors assessed sociodemographic characteristics, CAM use, and health literacy. They used bivariate and multivariate logistic regression to test the association of health literacy with four patterns of CAM use. Of the 581 participants, 50% reported using any CAM, 28% used provider-delivered CAM therapies, 27% used relaxation techniques, and 21% used herbal medicine. Of those with higher health literacy, 55% used CAM. Although there was no association between health literacy and CAM use for non-Hispanic Black participants, non-Hispanic White (OR = 3.68, 95% CI [1.27, 9.99]) and Hispanic/other race (OR = 3.40, 95% CI [1.46, 7.91]) participants were significantly more likely to use CAM if they had higher health literacy. For each racial/ethnic group, there were higher odds of using relaxation techniques among those with higher health literacy. Underserved hospitalized patients use CAM. Regardless of race, patients with high health literacy make greater use of relaxation techniques

    Non-Markovian stochastic Schr\"odinger equations: Generalization to real-valued noise using quantum measurement theory

    Full text link
    Do stochastic Schr\"odinger equations, also known as unravelings, have a physical interpretation? In the Markovian limit, where the system {\em on average} obeys a master equation, the answer is yes. Markovian stochastic Schr\"odinger equations generate quantum trajectories for the system state conditioned on continuously monitoring the bath. For a given master equation, there are many different unravelings, corresponding to different sorts of measurement on the bath. In this paper we address the non-Markovian case, and in particular the sort of stochastic \sch equation introduced by Strunz, Di\' osi, and Gisin [Phys. Rev. Lett. 82, 1801 (1999)]. Using a quantum measurement theory approach, we rederive their unraveling which involves complex-valued Gaussian noise. We also derive an unraveling involving real-valued Gaussian noise. We show that in the Markovian limit, these two unravelings correspond to heterodyne and homodyne detection respectively. Although we use quantum measurement theory to define these unravelings, we conclude that the stochastic evolution of the system state is not a true quantum trajectory, as the identity of the state through time is a fiction.Comment: 17 pages, 3 figure

    SustainaWHAT?! Learnings and legacies

    Get PDF
    SustainaWHAT?! is a multi-disciplinary, student/ staff co-created, cross-faculty and now crossinstitutional collaborative project which encourages PGRs to explore the relationship between the United Nations Sustainable Development Goals and their research, with a focus on their professional and personal development. Initiated in 2021 by Ros Beaumont at Newcastle University’s multi, inter and transdisciplinary School ‘X’. This question chimed with Julie Gwilliam (Cardiff University) and Fiona Cownie (Bournemouth University) when they attended a joint student / staff presentation at the 2021 AdvanceHE Sustainability Symposium. Come and find about what we've done so far and our future plans
    corecore