222 research outputs found

    Planetary circulations in the presence of transient and self-induced heating

    Get PDF
    The research program focuses on large-scale circulations and their interaction with the global convective pattern. An 11-year record of global cloud imagery and contemporaneous fields of motion and temperature have been used to investigate organized convection and coherent variability of the tropical circulation operating on intraseasonal time scales. This study provides a detailed portrait of tropical variability associated with the so-called Madden-Julian Oscillation (MJO). It reveals the nature, geographical distribution, and seasonality of discrete convective signal, which is a measure of feedback between the circulation and the convective pattern. That discrete spectral behavior has been evaluated in light of natural variability of the ITCZ associated with climatological convection. A composite signature of the MJO, based on cross-covariance statistics of cloud cover, motion, and temperature, has been constructed to characterize the lifecycle of the disturbance in terms of these properties. The composite behavior has also been used to investigate the influence the MJO exerts on the zonal-mean circulation and the involvement of the MJO in transfers of momentum between the atmosphere and the solid Earth. The aforementioned observational studies have led to the production of two animations. One reveals the convective signal in band-pass filtered OLR and compares it to climatological convection. The other is a 3-dimensional visualization of the composite lifecycle of the MJO. With a clear picture of the MJO in hand, feedback between the circulation and the convective pattern can be diagnosed meaningfully in numerical simulations. This process is being explored in calculations with the linearized primitive equations on the sphere in the presence of realistic stability and shear. The numerical framework represents climatological convection as a space-time stochastic process and wave-induced convection in terms of the vertically-integrated moisture flux convergence. In these calculations, frictional convergence near the equator emerges as a key to feedback between the circulation and the convective pattern. At low latitudes, nearly geostrophic balance in the boundary layer gives way to frictional balance. This shifts the wave-induced convection into phase with the temperature anomaly and allows the attending heating to feed back positively onto the circulation. The calculations successfully reproduce the salient features of the MJO. They are being used to understand the growth and decay phases of the composite lifecycle and the conditions that favor amplification of the MJO

    Assessment of and Response to Data Needs of Clinical and Translational Science Researchers and Beyond

    Get PDF
    Objective and Setting: As universities and libraries grapple with data management and “big data,” the need for data management solutions across disciplines is particularly relevant in clinical and translational science (CTS) research, which is designed to traverse disciplinary and institutional boundaries. At the University of Florida Health Science Center Library, a team of librarians undertook an assessment of the research data management needs of CTS researchers, including an online assessment and follow-up one-on-one interviews. Design and Methods: The 20-question online assessment was distributed to all investigators affiliated with UF’s Clinical and Translational Science Institute (CTSI) and 59 investigators responded. Follow-up in-depth interviews were conducted with nine faculty and staff members. Results: Results indicate that UF’s CTS researchers have diverse data management needs that are often specific to their discipline or current research project and span the data lifecycle. A common theme in responses was the need for consistent data management training, particularly for graduate students; this led to localized training within the Health Science Center and CTSI, as well as campus-wide training. Another campus-wide outcome was the creation of an action-oriented Data Management/Curation Task Force, led by the libraries and with participation from Research Computing and the Office of Research. Conclusions: Initiating conversations with affected stakeholders and campus leadership about best practices in data management and implications for institutional policy shows the library’s proactive leadership and furthers our goal to provide concrete guidance to our users in this area

    Role of the QBO in modulating the influence of the 11 year solar cycle on the atmosphere using constant forcings

    Get PDF
    We present a set of six 20 year experiments made with a state-of-the-art chemistry-climate model that incorporates the atmosphere from the surface to the lower thermosphere. The response of the middle atmosphere to the 11 year solar cycle, its impact on the troposphere, and especially the role of an externally prescribed stratospheric quasi-biennial oscillation (QBO) is investigated with NCAR's Whole Atmosphere Community Climate Model (WACCM3). The model experiments use either fixed solar cycle inputs or fixed solar cycle together with prescribed QBO phase. The annual mean solar response in temperature and ozone in the upper stratosphere is in qualitative agreement with other modeling and observational studies and does not depend on the presence of the imposed QBO. However, the solar response in the middle to lower stratosphere differs significantly for the two QBO phases. During solar maxima a weaker Brewer-Dobson circulation with relative downwelling, warming, and enhanced ozone occurs in the tropical lower stratosphere during QBO east conditions, while a stronger circulation, cooling, and decreased ozone exists during QBO west conditions. The net ozone increase during QBO east is the combined result of production and advection, whereas during QBO west the effects cancel each other and result in little net ozone changes. Especially during Southern Hemisphere late winter to early spring, the solar response at polar latitudes switches sign between the two QBO phases and qualitatively confirms observations and other recent model studies. During a poleward downward modulation of the polar night jet and a corresponding modulation of the Brewer-Dobson circulation in time, solar signals are detected all the way down to the extratropical troposphere. Possible limitations of the model experiments with respect to the fixed solar cycle conditions or the prescribed QBO phases, as well as the constant sea surface temperatures, are discussed

    Dynamics of the middle atmosphere as simulated by the Whole Atmosphere Community Climate Model, version 3 (WACCM3)

    Get PDF
    The Whole Atmosphere Community Climate Model, version 3 (WACCM3) is a state-of-the-art climate model extending from the Earth's surface to the lower thermosphere. In this paper we present a detailed climatology of the dynamics of the middle atmosphere as represented by WACCM3 at various horizontal resolutions and compare them to observations. In addition to the mean climatological fields, we examine in detail the middle atmospheric momentum budget as well as several lower and upper atmosphere coupling phenomena including stratospheric sudden warmings, the 2-day wave, and the migrating diurnal tide. We find that in large part, differences between WACCM3 and observations and the mean state of the model at various horizontal resolutions are related to gravity wave drag, which is parameterized in WACCM3 (and similar models). All three lower and upper atmosphere coupling processes examined show high sensitivity to the model's resolution

    On the magnitude and sensitivity of the quasi-biennial oscillation response to a tropical volcanic eruption

    Get PDF
    Volcanic eruptions that inject sulfur dioxide into the stratosphere have the potential to alter large-scale circulation patterns, such as the quasi-biennial oscillation (QBO), which can affect weather and transport of chemical species. Here, we conduct simulations of tropical volcanic eruptions using the UM-UKCA aerosol-climate model with an explicit representation of the QBO. Eruptions emitting 60 Tg of SO2 (i.e. the magnitude of the 1815 Mt. Tambora eruption) and 15 Tg of SO2 (i.e. the magnitude of the 1991 Mt. Pinatubo eruption) were initiated at the Equator during two different QBO states. We show that tropical eruptions delay the progression of the QBO phases, with the magnitude of the delay dependent on the initial wind shear in the lower stratosphere and a much longer delay when the shear is easterly than when it is westerly. The QBO response in our model is driven by vertical advection of momentum by the stronger tropical upwelling caused by heating due to the increased volcanic sulfate aerosol loading. Direct aerosol-induced warming with subsequent thermal wind adjustment, as proposed by previous studies, is found to only play a secondary role. This interpretation of the response is supported by comparison with a simple dynamical model. The dependence of the magnitude of the response on the initial QBO state results from differences in the QBO secondary circulation. In the easterly shear zone of the QBO, the vertical component of the secondary circulation is upward and reinforces the anomalous upwelling driven by volcanic aerosol heating, whereas in the westerly shear zone the vertical component is downward and opposes the aerosol-induced upwelling. We also find a change in the latitudinal structure of the QBO, with the westerly phase of the QBO strengthening in the hemisphere with the lowest sulfate aerosol burden. Overall, our study suggests that tropical eruptions of Pinatubo magnitude or larger could force changes to the progression of the QBO, with particularly disruptive outcomes for the QBO if the eruption occurs during the easterly QBO shear

    A momentum budget study of the semi‐annual oscillation in the Whole Atmosphere Community Climate Model

    Get PDF
    The representation of the semi‐annual oscillation (SAO) in climate models shows a common easterly bias of several tens of metres per second compared to observations. These biases could be due to deficiencies in eastward tropical wave forcing, the position or strength of the climatological summertime jet or the strength/timing of the Brewer–Dobson circulation. This motivates further analysis of the momentum budget of the upper stratosphere within models and a more detailed comparison with reanalyses to determine the origin of the bias. In this study, the transformed Eulerian mean momentum equation is used to evaluate the different forcing terms that contribute to the SAO in the MERRA2 reanalysis dataset. This is then compared with the equivalent analysis using data from a climate simulation of the Whole Atmosphere Community Climate Model (WACCM). The comparison shows that WACCM underestimates eastward forcing by both resolved and parameterised waves at equatorial latitudes when compared with MERRA2 and also has a weaker tropical upwelling above 1 hPa

    The Long-term Middle Atmospheric Influence of Very Large Solar Proton Events

    Get PDF
    Long-term variations in ozone have been caused by both natural and humankind related processes. The humankind or anthropogenic influence on ozone originates from the chlorofluorocarbons and halons (chlorine and bromine) and has led to international regulations greatly limiting the release of these substances. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the long-term (> few months) influences of solar proton events from 1963 through 2004 on stratospheric ozone and temperature. There were extremely large solar proton events in 1972, 1989,2000,2001, and 2003. These events caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen-containing compounds, which led to the polar ozone destruction. The nitrogen-containing compounds, called odd nitrogen, lasted much longer than the hydrogen-containing compounds and led to long-lived stratospheric impacts. An extremely active period for these events occurred in the five-year period, 2000- 2004, and caused increases in odd nitrogen which lasted for several months after individual events. Associated stratospheric ozone decreases of >lo% were calculated to last for up to five months past the largest events. However, the computed total column ozone and stratospheric temperature changes connected with the solar events were not found to be statistically significant. Thus, solar proton events do not likely contribute significantly to measured total column ozone fluctuations and stratospheric temperature changes

    Short- and Medium-term Atmospheric Effects of Very Large Solar Proton Events

    Get PDF
    Long-term variations in ozone have been caused by both natural and humankind related processes. In particular, the humankind or anthropogenic influence on ozone from chlorofluorocarbons and halons (chlorine and bromine) has led to international regulations greatly limiting the release of these substances. These anthropogenic effects on ozone are most important in polar regions and have been significant since the 1970s. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the short- and medium-term (days to a few months) influences of solar proton events between 1963 and 2005 on stratospheric ozone. The four largest events in the past 45 years (August 1972; October 1989; July 2000; and October-November 2003) caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen- containing compounds, which led to the polar ozone destruction. The hydrogen-containing compounds have very short lifetimes and lasted for only a few days (typically the duration of the solar proton event). On the other hand, the nitrogen-containing compounds lasted much longer, especially in the Winter. The nitrogen oxides were predicted to increase substantially due to these solar events and led to mid- to upper polar stratospheric ozone decreases of over 20%. These WACCM results generally agreed with satellite measurements. Both WACCM and measurements showed enhancements of nitric acid, dinitrogen pentoxide, and chlorine nitrate, which were indirectly caused by these solar events. Solar proton events were shown to cause a significant change in the polar stratosphere and need to be considered in understanding variations during years of strong solar activity

    Long-term clinical effects of ventricular pacing reduction with a changeover mode to minimize ventricular pacing in a general pacemaker population

    Get PDF
    AIM: Right ventricular pacing (VP) has been hypothesized to increase the risk in heart failure (HF) and atrial fibrillation (AF). The ANSWER study evaluated, whether an AAI-DDD changeover mode to minimize VP (SafeR) improves outcome compared with DDD in a general dual-chamber pacemaker population. METHODS AND RESULTS: ANSWER was a randomized controlled multicentre trial assessing SafeR vs. standard DDD in sinus node disease (SND) or AV block (AVB) patients. After a 1-month run-in period, they were randomized (1 : 1) and followed for 3 years. Pre-specified co-primary end-points were VP and the composite of hospitalization for HF, AF, or cardioversion. Pre-specified secondary end-points were cardiac death or HF hospitalizations and cardiovascular hospitalizations. ANSWER enrolled 650 patients (52.0% SND, 48% AVB) at 43 European centres and randomized in SafeR (n = 314) or DDD (n = 318). The SafeR mode showed a significant decrease in VP compared with DDD (11.5 vs. 93.6%, P < 0.0001 at 3 years). Deaths and syncope did not differ between randomization arms. No significant difference between groups [HR = 0.78; 95% CI (0.48-1.25); P = 0.30] was found in the time to event of the co-primary composite of hospitalization for HF, AF, or cardioversion, nor in the individual components. SafeR showed a 51% risk reduction (RR) in experiencing cardiac death or HF hospitalization [HR = 0.49; 95% CI (0.27-0.90); P = 0.02] and 30% RR in experiencing cardiovascular hospitalizations [HR = 0.70; 95% CI (0.49-1.00); P = 0.05]. CONCLUSION: SafeR safely and significantly reduced VP in a general pacemaker population though had no effect on hospitalization for HF, AF, or cardioversion, when compared with DDD
    • 

    corecore