1,602 research outputs found

    Detecting the gravitational wave background from primordial black hole dark matter

    Full text link
    The black hole merging rates inferred after the gravitational-wave detection by Advanced LIGO/VIRGO and the relatively high mass of the progenitors are consistent with models of dark matter made of massive primordial black holes (PBH). PBH binaries emit gravitational waves in a broad range of frequencies that will be probed by future space interferometers (LISA) and pulsar timing arrays (PTA). The amplitude of the stochastic gravitational-wave background expected for PBH dark matter is calculated taking into account various effects such as initial eccentricity of binaries, PBH velocities, mass distribution and clustering. It allows a detection by the LISA space interferometer, and possibly by the PTA of the SKA radio-telescope. Interestingly, one can distinguish this background from the one of non-primordial massive binaries through a specific frequency dependence, resulting from the maximal impact parameter of binaries formed by PBH capture, depending on the PBH velocity distribution and their clustering properties. Moreover, we find that the gravitational wave spectrum is boosted by the width of PBH mass distribution, compared with that of the monochromatic spectrum. The current PTA constraints already rule out broad-mass PBH models covering more than three decades of masses, but evading the microlensing and CMB constraints due to clustering.Comment: 12 pages, 4 figure

    Massive Primordial Black Holes from Hybrid Inflation as Dark Matter and the seeds of Galaxies

    Full text link
    In this paper we present a new scenario where massive Primordial Black Holes (PBH) are produced from the collapse of large curvature perturbations generated during a mild waterfall phase of hybrid inflation. We determine the values of the inflaton potential parameters leading to a PBH mass spectrum peaking on planetary-like masses at matter-radiation equality and producing abundances comparable to those of Dark Matter today, while the matter power spectrum on scales probed by CMB anisotropies agrees with Planck data. These PBH could have acquired large stellar masses today, via merging, and the model passes both the constraints from CMB distortions and micro-lensing. This scenario is supported by Chandra observations of numerous BH candidates in the central region of Andromeda. Moreover, the tail of the PBH mass distribution could be responsible for the seeds of supermassive black holes at the center of galaxies, as well as for ultra-luminous X-rays sources. We find that our effective hybrid potential can originate e.g. from D-term inflation with a Fayet-Iliopoulos term of the order of the Planck scale but sub-planckian values of the inflaton field. Finally, we discuss the implications of quantum diffusion at the instability point of the potential, able to generate a swiss-cheese like structure of the Universe, eventually leading to apparent accelerated cosmic expansion.Comment: 17 pages, 5 figures, comments welcom

    Primordial black holes from the QCD epoch: Linking dark matter, baryogenesis and anthropic selection

    Full text link
    If primordial black holes (PBHs) formed at the quark-hadron epoch, their mass must be close to the Chandrasekhar limit, this also being the characteristic mass of stars. If they provide the dark matter (DM), the collapse fraction must be of order the cosmological baryon-to-photon ratio 109\sim 10^{-9}, which suggests a scenario in which a baryon asymmetry is produced efficiently in the outgoing shock around each PBH and then propagates to the rest of the Universe. We suggest that the temperature increase in the shock provides the ingredients for hot spot electroweak baryogenesis. This also explains why baryons and DM have comparable densities, the precise ratio depending on the size of the PBH relative to the cosmological horizon at formation. The observed value of the collapse fraction and baryon asymmetry depends on the amplitude of the curvature fluctuations which generate the PBHs and may be explained by an anthropic selection effect associated with the existence of galaxies. We propose a scenario in which the quantum fluctuations of a light stochastic spectator field during inflation generate large curvature fluctuations in some regions, with the stochasticity of this field providing the basis for the required selection. Finally, we identify several observational predictions of our scenario that should be testable within the next few years. In particular, the PBH mass function could extend to sufficiently high masses to explain the black hole coalescences observed by LIGO/Virgo.Comment: 37 pages, 3 figures, published in MNRA

    Reconstruction of the null-test for the matter density perturbations

    Full text link
    We systematically study the null-test for the growth rate data first presented in [S. Nesseris and D. Sapone, arXiv:1409.3697] and we reconstruct it using various combinations of data sets, such as the fσ8f\sigma_8 and H(z)H(z) or Type Ia supernovae (SnIa) data. We perform the reconstruction in two different ways, either by directly binning the data or by fitting various dark energy models. We also examine how well the null-test can be reconstructed by future data by creating mock catalogs based on the cosmological constant model, a model with strong dark energy perturbations, the f(R)f(R) and f(G)f(G) models, and the large void LTB model that exhibit different evolution of the matter perturbations. We find that with future data similar to an LSST-like survey, the null-test will be able to successfully discriminate between these different cases at the 5σ5\sigma level.Comment: 15 pages; 10 figures; 5 table

    Towards the most general scalar-tensor theories of gravity: a unified approach in the language of differential forms

    Full text link
    We use a description based on differential forms to systematically explore the space of scalar-tensor theories of gravity. Within this formalism, we propose a basis for the scalar sector at the lowest order in derivatives of the field and in any number of dimensions. This minimal basis is used to construct a finite and closed set of Lagrangians describing general scalar-tensor theories invariant under Local Lorentz Transformations in a pseudo-Riemannian manifold, which contains ten physically distinct elements in four spacetime dimensions. Subsequently, we compute their corresponding equations of motion and find which combinations are at most second order in derivatives in four as well as arbitrary number of dimensions. By studying the possible exact forms (total derivatives) and algebraic relations between the basis components, we discover that there are only four Lagrangian combinations producing second order equations, which can be associated with Horndeski's theory. In this process, we identify a new second order Lagrangian, named kinetic Gauss-Bonnet, that was not previously considered in the literature. However, we show that its dynamics is already contained in Horndeski's theory. Finally, we provide a full classification of the relations between different second order theories. This allows us to clarify, for instance, the connection between different covariantizations of Galileons theory. In conclusion, our formulation affords great computational simplicity with a systematic structure. As a first step we focus on theories with second order equations of motion. However, this new formalism aims to facilitate advances towards unveiling the most general scalar-tensor theories.Comment: 28 pages, 1 figure, version published in PRD (minor changes

    An analytical approach to bayesian evidence computation

    Full text link
    Bayesian evidence is a key tool in model selection, allowing a comparison of models with different numbers of parameters. Its use in the analysis of cosmological models has been limited by difficulties in calculating it, with current numerical algorithms requiring supercomputers. In this paper we give exact formulae for the Bayesian evidence in the case of Gaussian likelihoods with arbitrary correlations and top-hat priors, and approximate formulae for the case of likelihood distributions with leading non-Gaussianities (skewness and kurtosis). We apply these formulae to cosmological models with and without isocurvature components, and compare with results we previously obtained using numerical thermodynamic integration. We find that the results are of lower precision than the thermodynamic integration, while still being good enough to be usefu

    The VST ATLAS quasar survey I: Catalogue of photometrically selected quasar candidates

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMWe present the VST ATLAS Quasar Survey, consisting of ∼1229 000 quasar (QSO) candidates with 16 2.2. To guide our selection, we use X-ray/UV/optical/MIR data in the extended William Herschel Deep Field (WHDF) where we find a g 2.2 QSOs at g 1× 10-14 ergs cm-2 s-1 limit of eROSITA. We adjust the selection criteria from our previous 2QDES pilot survey and prioritize VST ATLAS candidates that show both UV and MIR excess, also selecting candidates initially classified as extended. We test our selections using data from DESI (which will be released in DR1) and 2dF to estimate the efficiency and completeness, and we use ANNz2 to determine photometric redshifts. Applying over the ∼4700 deg2 ATLAS area gives us ∼ 917000 z 2.2, we find ∼310() 000 candidates, of which 169 000 are likely to be QSOs for a sky density of ∼36 deg-

    Dark Energy Survey Year 3 results: Exploiting small-scale information with lensing shear ratios

    Full text link
    Using the first three years of data from the Dark Energy Survey (DES), we use ratios of small-scale galaxy-galaxy lensing measurements around the same lens sample to constrain source redshift uncertainties, intrinsic alignments and other systematics or nuisance parameters of our model. Instead of using a simple geometric approach for the ratios as has been done in the past, we use the full modeling of the galaxy-galaxy lensing measurements, including the corresponding integration over the power spectrum and the contributions from intrinsic alignments and lens magnification. We perform extensive testing of the small-scale shear-ratio (SR) modeling by studying the impact of different effects such as the inclusion of baryonic physics, nonlinear biasing, halo occupation distribution descriptions and lens magnification, among others, and using realistic N-body simulations of the DES data. We validate the robustness of our constraints in the data by using two independent lens samples with different galaxy properties, and by deriving constraints using the corresponding large-scale ratios for which the modeling is simpler. The results applied to the DES Y3 data demonstrate how the ratios provide significant improvements in constraining power for several nuisance parameters in our model, especially on source redshift calibration and intrinsic alignments. For source redshifts, SR improves the constraints from the prior by up to 38% in some redshift bins. Such improvements, and especially the constraints it provides on intrinsic alignments, translate to tighter cosmological constraints when shear ratios are combined with cosmic shear and other 2pt functions. In particular, for the DES Y3 data, SR improves S8 constraints from cosmic shear by up to 31%, and for the full combination of probes (3 × 2pt) by up to 10%. The shear ratios presented in this work are used as an additional likelihood for cosmic shear, 2 × 2pt and the full 3 × 2pt in the fiducial DES Y3 cosmological analysi
    corecore