10 research outputs found

    Identificación y caracterización de las células madre de la hipófisis

    Get PDF
    La hipófisis adulta se caracteriza por ser una glándula endocrina que posee células productoras de hormonas, que regulan procesos vitales fundamentales. Se han propuesto diferentes tipos celulares como candidatas a células madre. No obstante, poco se conoce acerca de cómo la hipófisis se regenera durante la vida adulta y de su regulación homeostática durante determinados cambios fisiológicos específicos, como la pubertad o el embarazo, o en condiciones patológicas como el desarrollo tumoral. En el trabajo presentado en esta memoria, hemos identificado en roedores y humanos un nicho de células no endocrinas caracterizado por la expresión de GFRa2, un co-receptor de Ret para Neurturina. Estas células también expresan las proteínas b-catenina y E-cadherina orientadas de una manera específica, sugiriendo una polaridad planar en la organización del nicho. Además, las células del nicho expresan el factor de transcripción específico de células de la hipófisis Prop1, así como los marcadores de células madre Sox2, Sox9 y Oct4. Las denominamos células GPS (G: GFRa2+, P: Prop1+, S: Stem+, Oct4, Sox2 y Sox9). Las células positivas para GFRa2 forman esferoides en cultivo que no producen hormonas. Estos esferoides pueden ser diferenciados a células productoras de hormonas o neuronas bajo estímulos específicos. In vivo, las células GPS presentan bajos niveles de proliferación tras el nacimiento, siendo capaces de retener BrdU y presentar núcleos con telómeros largos, propiedades características de las células madre in vivo. El número de células GPS presentes en la hipófisis se ve alterado en ratones deficientes para Cdk4, un modelo de hipopituitarismo inducido por la pérdida de la kinasa dependiente de ciclina Cdk4. Por tanto, las células GPS tendrían una relevancia funcional tanto en la expansión fisiológica de la hipófisis durante la vida como de protección frente a enfermedades hipofisarias

    Deletion of miRNA processing enzyme Dicer in POMC-expressing cells leads to pituitary dysfunction, neurodegeneration and development of obesity

    Get PDF
    MicroRNAs (miRNAs) have recently emerged as key regulators of metabolism. However, their potential role in the central regulation of whole-body energy homeostasis is still unknown. In this study we show that the expression of Dicer, an essential endoribonuclease for miRNA maturation, is modulated by nutrient availability and excess in the hypothalamus. Conditional deletion of Dicer in POMC-expressing cells resulted in obesity, characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism and alterations in the pituitary-adrenal axis. The development of the obese phenotype was paralleled by a POMC neuron degenerative process that started around 3 weeks of age. Hypothalamic transcriptomic analysis in presymptomatic POMCDicerKO mice revealed the downregulation of genes implicated in biological pathways associated with classical neurodegenerative disorders, such as MAPK signaling, ubiquitin-proteosome system, autophagy and ribosome biosynthesis. Collectively, our results highlight a key role for miRNAs in POMC neuron survival and the consequent development of neurodegenerative obesity

    Humanized medium (h7H) allows long-term primary follicular thyroid cultures from human normal thyroid, benign neoplasm, and cancer

    Get PDF
    Mechanisms of thyroid physiology and cancer are principally studied in follicular cell lines. However, human thyroid cancer lines were found to be heavily contaminated by other sources, and only one supposedly normal-thyroid cell line, immortalized with SV40 antigen, is available. In primary culture, human follicular cultures lose their phenotype after passage. We hypothesized that the loss of the thyroid phenotype could be related to culture conditions in which human cells are grown in medium optimized for rodent culture, including hormones with marked differences in its affinity for the relevant rodent/human receptor.|The objective of the study was to define conditions that allow the proliferation of primary human follicular thyrocytes for many passages without losing phenotype.|Concentrations of hormones, transferrin, iodine, oligoelements, antioxidants, metabolites, and ethanol were adjusted within normal homeostatic human serum ranges. Single cultures were identified by short tandem repeats. Human-rodent interspecies contamination was assessed.|We defined an humanized 7 homeostatic additives medium enabling growth of human thyroid cultures for more than 20 passages maintaining thyrocyte phenotype. Thyrocytes proliferated and were grouped as follicle-like structures; expressed Na+/I- symporter, pendrin, cytokeratins, thyroglobulin, and thyroperoxidase showed iodine-uptake and secreted thyroglobulin and free T3. Using these conditions, we generated a bank of thyroid tumors in culture from normal thyroids, Grave's hyperplasias, benign neoplasms (goiter, adenomas), and carcinomas.|Using appropriate culture conditions is essential for phenotype maintenance in human thyrocytes. The bank of thyroid tumors in culture generated under humanized humanized 7 homeostatic additives culture conditions will provide a much-needed tool to compare similarly growing cells from normal vs pathological origins and thus to elucidate the molecular basis of thyroid disease.Ministerio de Ciencia e InnovaciónInstituto de Salud Carlos IIIXunta de GaliciaFondo Social Europeo of the European Communit

    The syndrome of central hypothyroidism and macroorchidism: IGSF1 controls TRHR and FSHB expression by differential modulation of pituitary TGFβ and Activin pathways

    Get PDF
    IGSF1 (Immunoglobulin Superfamily 1) gene defects cause central hypothyroidism and macroorchidism. However, the pathogenic mechanisms of the disease remain unclear. Based on a patient with a full deletion of IGSF1 clinically followed from neonate to adulthood, we investigated a common pituitary origin for hypothyroidism and macroorchidism, and the role of IGSF1 as regulator of pituitary hormone secretion. The patient showed congenital central hypothyroidism with reduced TSH biopotency, over-secretion of FSH at neonatal minipuberty and macroorchidism from 3 years of age. His markedly elevated inhibin B was unable to inhibit FSH secretion, indicating a status of pituitary inhibin B resistance. We show here that IGSF1 is expressed both in thyrotropes and gonadotropes of the pituitary and in Leydig and germ cells in the testes, but at very low levels in Sertoli cells. Furthermore, IGSF1 stimulates transcription of the thyrotropin-releasing hormone receptor (TRHR) by negative modulation of the TGFβ1-Smad signaling pathway, and enhances the synthesis and biopotency of TSH, the hormone secreted by thyrotropes. By contrast, IGSF1 strongly down-regulates the activin-Smad pathway, leading to reduced expression of FSHB, the hormone secreted by gonadotropes. In conclusion, two relevant molecular mechanisms linked to central hypothyroidism and macroorchidism in IGSF1 deficiency are identified, revealing IGSF1 as an important regulator of TGFβ/Activin pathways in the pituitary

    Pituitary Cell Turnover: From Adult Stem Cell Recruitment through Differentiation to Death

    No full text
    The recent demonstration using genetic tracing that in the adult pituitary stem cells are normally recruited from the niche in the marginal zone and differentiate into secretory cells in the adenopituitary has elegantly confirmed the proposal made when the pituitary stem cell niche was first discovered 5 years ago. Some of the early controversies have also been resolved. However, many questions remain, such as which are the markers that make a pituitary stem cell truly unique and the exact mechanisms that trigger recruitment from the niche. Little is known about the processes of commitment and differentiation once a stem cell has left the niche. Moreover, the acceptance that pituitary cells are renewed by stem cells implies the existence of regulated mechanisms of cell death in differentiated cells which must themselves be explained. The demonstration of an apoptotic pathway mediated by RET/caspase 3/Pit-1/Arf/p53 in normal somatotrophs is therefore an important step towards understanding how pituitary cell number is regulated. Further work will elucidate how the rates of the three processes of cell renewal, differentiation and apoptosis are balanced in tissue homeostasis after birth, but altered in pituitary hyperplasia in response to physiological stimuli such as puberty and lactation. Thus, we can aim to understand the mechanisms underlying human disease due to insufficient (hypopituitarism) or excess (pituitary tumor) cell numbers

    Craniopharyngiomas express embryonic stem cell markers (SOX2, OCT4, KLF4, and SOX9) as pituitary stem cells but do not coexpress RET/GFRA3 receptors

    No full text
    Context: Adult stem cells maintain some markers expressed by embryonic stem cells and express other specific markers depending on the organ where they reside. Recently, stem/progenitor cells in the rodent and human pituitary have been characterized as expressing GFRA2/RET, PROP1, and stem cell markers such as SOX2 and OCT4 (GPS cells). Objective: Our objective was to detect other specific markers of the pituitary stem cells and to investigate whether craniopharyngiomas (CRF), a tumor potentially derived from Rathke's pouch remnants, express similar markers as normal pituitary stem cells. Design: We conducted mRNA and Western blot studies in pituitary extracts, and immunohistochemistry and immunofluorescence on sections from normal rat and human pituitaries and 20 CRF (18 adamantinomatous and two papillary). Results: Normal pituitary GPS stem cells localized in the marginal zone (MZ) express three key embryonic stem cell markers, SOX2, OCT4, and KLF4, in addition to SOX9 and PROP1 and beta-catenin overexpression. They express the RET receptor and its GFRA2 coreceptor but also express the coreceptor GFRA3 that could be detected in the MZ of paraffin pituitary sections. CRF maintain the expression of SOX2, OCT4, KLF4, SOX9, and beta-catenin. However, RET and GFRA3 expression was altered in CRF. In 25% (five of 20), both RET and GFRA3 were detected but not colocalized in the same cells. The other 75% (15 of 20) lose the expression of RET, GFRA3, or both proteins simultaneously. Conclusions: Human pituitary adult stem/progenitor cells (GPS) located in the MZ are characterized by expression of embryonic stem cell markers SOX2, OCT4, and KLF4 plus the specific pituitary embryonic factor PROP1 and the RET system. Redundancy in RET coreceptor expression (GFRA2 and GFRA3) suggest an important systematic function in their physiological behavior. CRF share the stem cell markers suggesting a common origin with GPS

    Defining stem cell types: Understanding the therapeutic potential of ESCs, ASCs, and iPS cells

    No full text
    Embryonic, adult, artificially reprogrammed, and cancer...-there are various types of cells associated with stemness. Do they have something fundamental in common? Are we applying a common name to very different entities? In this review, we will revisit the characteristics that define 'pluripotency', the main property of stem cells (SCs). For each main type of physiological (embryonic and adult) or synthetic (induced pluripotent) SCs, markers and functional behavior in vitro and in vivo will be described. We will review the pioneering work that has led to obtaining human SC lines, together with the problems that have arisen, both in a biological context (DNA alterations, heterogeneity, tumors, and immunogenicity) and with regard to ethical concerns. Such problems have led to proposals for new operative procedures for growing human SCs of sufficiently high quality for use as models of disease and in human therapy. Finally, we will review the data from the first clinical trials to use various types of SCs

    The syndrome of central hypothyroidism and macroorchidism: IGSF1 controls TRHR and FSHB expression by differential modulation of pituitary TGF? and Activin pathways

    Get PDF
    IGSF1 (Immunoglobulin Superfamily 1) gene defects cause central hypothyroidism and macroorchidism. However, the pathogenic mechanisms of the disease remain unclear. Based on a patient with a full deletion of IGSF1 clinically followed from neonate to adulthood, we investigated a common pituitary origin for hypothyroidism and macroorchidism, and the role of IGSF1 as regulator of pituitary hormone secretion. The patient showed congenital central hypothyroidism with reduced TSH biopotency, over-secretion of FSH at neonatal minipuberty and macroorchidism from 3 years of age. His markedly elevated inhibin B was unable to inhibit FSH secretion, indicating a status of pituitary inhibin B resistance. We show here that IGSF1 is expressed both in thyrotropes and gonadotropes of the pituitary and in Leydig and germ cells in the testes, but at very low levels in Sertoli cells. Furthermore, IGSF1 stimulates transcription of the thyrotropin-releasing hormone receptor (TRHR) by negative modulation of the TGFβ1-Smad signaling pathway, and enhances the synthesis and biopotency of TSH, the hormone secreted by thyrotropes. By contrast, IGSF1 strongly down-regulates the activin-Smad pathway, leading to reduced expression of FSHB, the hormone secreted by gonadotropes. In conclusion, two relevant molecular mechanisms linked to central hypothyroidism and macroorchidism in IGSF1 deficiency are identified, revealing IGSF1 as an important regulator of TGFβ/Activin pathways in the pituitary
    corecore