15,012 research outputs found
A method for classifying mental tasks in the space of EEG transforms
In this article we describe a new method for supervised classification of EEG signals. This method applies to the power spectrum density data and assigns class-dependent information weights to individual pixels, so that the decision is defined by the summary weights of the most informative pixel features. We experimentally analyze several versions of the approach. The informative features appear to be rather similar among different individuals, thus supporting the view that there are subject independent general brain patterns for the same mental task
Recommended from our members
Finite element modelling of atomic force microscope cantilever beams with uncertainty in material and dimensional parameters
Copyright © 2014 by Institute of Fundamental Technological Research
Polish Academy of Sciences, Warsaw, PolandThe stiffness and the natural frequencies of a rectangular and a V-shaped micro-cantilever beams used in Atomic Force Microscope (AFM) were analysed using the Finite Element (FE) method. A determinate analysis in the material and dimensional parameters was first carried out to compare with published analytical and experimental results. Uncertainties in the beams’ parameters such as the material properties and dimensions due to the fabrication process were then modelled using a statistic FE analysis. It is found that for the rectangular micro-beam, a ±5% change in the value of the parameters could result in 3 to 8-folds (up to more than 45%) errors in the stiffness or the 1st natural frequency of the cantilever. Such big uncertainties need to be considered in the design and calibration of AFM to ensure the measurement accuracy at the micron and nano scales. In addition, a sensitivity analysis was carried out for the influence of the studied parameters. The finding provides useful guidelines on the design of micro-cantilevers used in the AFM technology.The research was supported by Sichuan International Research Collaboration Project (2014HH0022)
Experimental investigation of the properties of electrospun nanofibers for potential medical application
Copyright © 2015 Anhui Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Polymer based nanofibers using ethylene-co-vinyl alcohol (EVOH) were fabricated by electrospinning technology. The nanofibers were studied for potential use as dressing materials for skin wounds treatment. Properties closely related to the clinical requirements for wound dressing were investigated, including the fluid uptake ability (FUA), the water vapour transmission rate (WVTR), the bacteria control ability of nanofibers encapsulated with different antibacterial drugs, and Ag of various concentrations. Nanofibre degradation under different environmental conditions was also studied for the prospect of long term usage. The finding confirms the potential of EVOH nanofibers for wound dressing application, including the superior performance compared to cotton gauze and the strong germ killing capacity when Ag particles are present in the nanofibers
The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision
We propose the Neuro-Symbolic Concept Learner (NS-CL), a model that learns
visual concepts, words, and semantic parsing of sentences without explicit
supervision on any of them; instead, our model learns by simply looking at
images and reading paired questions and answers. Our model builds an
object-based scene representation and translates sentences into executable,
symbolic programs. To bridge the learning of two modules, we use a
neuro-symbolic reasoning module that executes these programs on the latent
scene representation. Analogical to human concept learning, the perception
module learns visual concepts based on the language description of the object
being referred to. Meanwhile, the learned visual concepts facilitate learning
new words and parsing new sentences. We use curriculum learning to guide the
searching over the large compositional space of images and language. Extensive
experiments demonstrate the accuracy and efficiency of our model on learning
visual concepts, word representations, and semantic parsing of sentences.
Further, our method allows easy generalization to new object attributes,
compositions, language concepts, scenes and questions, and even new program
domains. It also empowers applications including visual question answering and
bidirectional image-text retrieval.Comment: ICLR 2019 (Oral). Project page: http://nscl.csail.mit.edu
Semileptonic Meson Decays Into A Highly Excited Charmed Meson Doublet
We study the heavy quark effective theory prediction for semileptonic
decays into an orbital excited -wave charmed doublet, the (, )
states (, ), at the leading order of heavy quark expansion.
The corresponding universal form factor is estimated by using the QCD sum rule
method. The decay rates we predict are and . The branching ratios are
and
, respectively.Comment: 6 pages,2 figure
Vector Fields with the Oriented Shadowing Property
We give a description of the \Cone-interior (\Int^1(\OrientSh)) of the
set of smooth vector fields on a smooth closed manifold that have the oriented
shadowing property. A special class \Bb of vector fields that are not
structurally stable is introduced. It is shown that the set
\Int^1(\OrientSh\setminus\Bb) coincides with the set of structurally stable
vector fields. An example of a field of the class \Bb belonging to
\Int^1(\OrientSh) is given. Bibliography: 18 titles.Comment: 42 page
Positive exchange bias in ferromagnetic La0.67Sr0.33MnO3 / SrRuO3 bilayers
Epitaxial La0.67Sr0.33MnO3 (LSMO)/ SrRuO3 (SRO) ferromagnetic bilayers have
been grown on (001) SrTiO3 (STO) substrates by pulsed laser deposition with
atomic layer control. We observe a shift in the magnetic hysteresis loop of the
LSMO layer in the same direction as the applied biasing field (positive
exchange bias). The effect is not present above the Curie temperature of the
SRO layer (), and its magnitude increases rapidly as the temperature is lowered
below . The direction of the shift is consistent with an antiferromagnetic
exchange coupling between the ferromagnetic LSMO layer and the ferromagnetic
SRO layer. We propose that atomic layer charge transfer modifies the electronic
state at the interface, resulting in the observed antiferromagnetic interfacial
exchange coupling.Comment: accepted to Applied Physics Letter
Search for and strangeonium-like structures
Theoretically, it has been presumed from an effective Lagrangian calculation
that there could exist two charged strangeonium-like molecular states
and , with and
configurations respectively. In the framework of QCD sum rules, we predict that
masses of () and ()
are and respectively, which are both above
their respective two meson thresholds. We suggest to put in practice the search
for these two charged strangeonium-like structures in future experiments.Comment: 7 pages, 4 eps figures; the version accepted for publication in PRD.
arXiv admin note: text overlap with arXiv:1203.070
Morphological evolution of a 3D CME cloud reconstructed from three viewpoints
The propagation properties of coronal mass ejections (CMEs) are crucial to
predict its geomagnetic effect. A newly developed three dimensional (3D) mask
fitting reconstruction method using coronagraph images from three viewpoints
has been described and applied to the CME ejected on August 7, 2010. The CME's
3D localisation, real shape and morphological evolution are presented. Due to
its interaction with the ambient solar wind, the morphology of this CME changed
significantly in the early phase of evolution. Two hours after its initiation,
it was expanding almost self-similarly. CME's 3D localisation is quite helpful
to link remote sensing observations to in situ measurements. The investigated
CME was propagating to Venus with its flank just touching STEREO B. Its
corresponding ICME in the interplanetary space shows a possible signature of a
magnetic cloud with a preceding shock in VEX observations, while from STEREO B
only a shock is observed. We have calculated three principle axes for the
reconstructed 3D CME cloud. The orientation of the major axis is in general
consistent with the orientation of a filament (polarity inversion line)
observed by SDO/AIA and SDO/HMI. The flux rope axis derived by the MVA analysis
from VEX indicates a radial-directed axis orientation. It might be that locally
only the leg of the flux rope passed through VEX. The height and speed profiles
from the Sun to Venus are obtained. We find that the CME speed possibly had
been adjusted to the speed of the ambient solar wind flow after leaving COR2
field of view and before arriving Venus. A southward deflection of the CME from
the source region is found from the trajectory of the CME geometric center. We
attribute it to the influence of the coronal hole where the fast solar wind
emanated from.Comment: ApJ, accepte
- …