5,016 research outputs found
Biological synthesis of fluorescent nanoparticles by cadmium and tellurite resistant Antarctic bacteria: exploring novel natural nanofactories
Indexación: Web of ScienceBackground: Fluorescent nanoparticles or quantum dots (QDs) have been intensely studied for basic and applied research due to their unique size-dependent properties. There is an increasing interest in developing ecofriendly methods to synthesize these nanoparticles since they improve biocompatibility and avoid the generation of toxic byproducts. The use of biological systems, particularly prokaryotes, has emerged as a promising alternative. Recent studies indicate that QDs biosynthesis is related to factors such as cellular redox status and antioxidant defenses. Based on this, the mixture of extreme conditions of Antarctica would allow the development of natural QDs producing bacteria.
Results: In this study we isolated and characterized cadmium and tellurite resistant Antarctic bacteria capable of synthesizing CdS and CdTe QDs when exposed to these oxidizing heavy metals. A time dependent change in fluorescence emission color, moving from green to red, was determined on bacterial cells exposed to metals. Biosynthesis was observed in cells grown at different temperatures and high metal concentrations. Electron microscopy analysis of treated cells revealed nanometric electron-dense elements and structures resembling membrane vesicles mostly associated to periplasmic space. Purified biosynthesized QDs displayed broad absorption and emission spectra characteristic of biogenic Cd nanoparticles.
Conclusions: Our work presents a novel and simple biological approach to produce QDs at room temperature by using heavy metal resistant Antarctic bacteria, highlighting the unique properties of these microorganisms as potent natural producers of nano-scale materials and promising candidates for bioremediation purposes.http://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-016-0477-
Daily Scheduled High Fat Meals Moderately Entrain Behavioral Anticipatory Activity, Body Temperature, and Hypothalamic c-Fos Activation
When fed in restricted amounts, rodents show robust activity in the hours preceding expected meal delivery. This process, termed food anticipatory activity (FAA), is independent of the light-entrained clock, the suprachiasmatic nucleus, yet beyond this basic observation there is little agreement on the neuronal underpinnings of FAA. One complication in studying FAA using a calorie restriction model is that much of the brain is activated in response to this strong hunger signal. Thus, daily timed access to palatable meals in the presence of continuous access to standard chow has been employed as a model to study FAA in rats. In order to exploit the extensive genetic resources available in the murine system we extended this model to mice, which will anticipate rodent high fat diet but not chocolate or other sweet daily meals (Hsu, Patton, Mistlberger, and Steele; 2010, PLoS ONE e12903). In this study we test additional fatty meals, including peanut butter and cheese, both of which induced modest FAA. Measurement of core body temperature revealed a moderate preprandial increase in temperature in mice fed high fat diet but entrainment due to handling complicated interpretation of these results. Finally, we examined activation patterns of neurons by immunostaining for the immediate early gene c-Fos and observed a modest amount of entrainment of gene expression in the hypothalamus of mice fed a daily fatty palatable meal
Stellar laboratories. V. The Xe VI ultraviolet spectrum and the xenon abundance in the hot DO-type white dwarf RE0503-289
For the spectral analysis of spectra of hot stars with a high resolution and
high signal-to-noise ratio (S/N), advanced non-local thermodynamic equilibrium
(NLTE) model atmospheres are mandatory. These are strongly dependent on the
reliability of the atomic data that are used for their calculation.
Reliable Xe VI oscillator strengths are used to identify Xe lines in the
ultraviolet spectrum of the DO-type white dwarf RE0503-289 and to determine its
photospheric Xe abundance.
We publish newly calculated oscillator strengths that are based on a recently
measured Xe VI laboratory line spectrum. These strengths were used to consider
their radiative and collisional bound-bound transitions in detail in our NLTE
stellar-atmosphere models to analyze Xe VI lines exhibited in high-resolution
and high S/N UV observations of RE0503-289.
We identify three hitherto unknown Xe VI lines in the ultraviolet spectrum of
RE0503-289 and confirm the previously measured photospheric Xe abundance of
this white dwarf (log Xe = -4.2 +/- 0.6).
Reliable measurements and calculations of atomic data are prerequisite for
stellar-atmosphere modeling. Observed Xe VI line profiles in the ultraviolet
spectrum of the white dwarf RE0503-289 were well reproduced with the newly
calculated Xe VI oscillator strengths.Comment: 3 pages, 4 figure
The boundary field theory induced by the Chern-Simons theory
The Chern-Simons theory defined on a 3-dimensional manifold with boundary is
written as a two-dimensional field theory defined only on the boundary of the
three-manifold. The resulting theory is, essentially, the pullback to the
boundary of a symplectic structure defined on the space of auxiliary fields in
terms of which the connection one-form of the Chern-Simons theory is expressed
when solving the condition of vanishing curvature. The counting of the physical
degrees of freedom living in the boundary associated to the model is performed
using Dirac's canonical analysis for the particular case of the gauge group
SU(2). The result is that the specific model has one physical local degree of
freedom. Moreover, the role of the boundary conditions on the original Chern-
Simons theory is displayed and clarified in an example, which shows how the
gauge content as well as the structure of the constraints of the induced
boundary theory is affected.Comment: 10 page
MONTE CARLO SIMULATIONS OF MUON PRODUCTION
Muon production requirements for a muon collider are presented. Production of
muons from pion decay is studied. Lithium lenses and solenoids are considered
for focussing pions from a target, and for matching the pions into a decay
channel. Pion decay channels of alternating quadrupoles and long solenoids are
compared. Monte Carlo simulations are presented for production of by protons over a wide energy range, and criteria for
choosing the best proton energy are discussed.Comment: Latex uses mu95.sty, 19 pages, 5 postscript figures. A postscript
file can be seen at URL http://www.cap.bnl.gov/~cap/mumu/important.html
Search for Publication
A Comparison of Front-Ends for Bitstream-Based ASR over IP
Automatic speech recognition (ASR) is called to play a relevant role in the provision of spoken interfaces for IP-based applications. However, as a consequence of the transit of the speech signal over these particular networks, ASR systems need to face two new challenges: the impoverishment of the speech quality due to the compression needed to fit the channel capacity and the inevitable occurrence of packet losses.
In this framework, bitstream-based approaches that obtain the ASR feature vectors directly from the coded bitstream, avoiding the speech decoding process, have been proposed ([S.H. Choi, H.K. Kim, H.S. Lee, Speech recognition using quantized LSP parameters and their transformations in digital communications, Speech Commun. 30 (4) (2000) 223–233. A. Gallardo-AntolÃn, C. Pelà ez-Moreno, F. DÃaz-de-MarÃa, Recognizing GSM digital speech, IEEE Trans. Speech Audio Process., to appear. H.K. Kim, R.V. Cox, R.C. Rose, Performance improvement of a bitstream-based front-end for wireless speech recognition in adverse environments, IEEE Trans. Speech Audio Process. 10 (8) (2002) 591–604. C. Peláez-Moreno, A. Gallardo-AntolÃn, F. DÃaz-de-MarÃa, Recognizing voice over IP networks: a robust front-end for speech recognition on the WWW, IEEE Trans. Multimedia 3(2) (2001) 209–218], among others) to improve the robustness of ASR systems. LSP (Line Spectral Pairs) are the preferred set of parameters for the description of the speech spectral envelope in most of the modern speech coders. Nevertheless, LSP have proved to be unsuitable for ASR, and they must be transformed into cepstrum-type parameters. In this paper we comparatively evaluate the robustness of the most significant LSP to cepstrum transformations in a simulated VoIP (voice over IP) environment which includes two of the most popular codecs used in that network (G.723.1 and G.729) and several network conditions. In particular, we compare ‘pseudocepstrum’ [H.K. Kim, S.H. Choi, H.S. Lee, On approximating Line Spectral Frequencies to LPC cepstral coefficients, IEEE Trans. Speech Audio Process. 8 (2) (2000) 195–199], an approximated but straightforward transformation of LSP into LP cepstral coefficients, with a more computationally demanding but exact one. Our results show that pseudocepstrum is preferable when network conditions are good or computational resources low, while the exact procedure is recommended when network conditions become more adverse.Publicad
Classical Tensors and Quantum Entanglement I: Pure States
The geometrical description of a Hilbert space asociated with a quantum
system considers a Hermitian tensor to describe the scalar inner product of
vectors which are now described by vector fields. The real part of this tensor
represents a flat Riemannian metric tensor while the imaginary part represents
a symplectic two-form. The immersion of classical manifolds in the complex
projective space associated with the Hilbert space allows to pull-back tensor
fields related to previous ones, via the immersion map. This makes available,
on these selected manifolds of states, methods of usual Riemannian and
symplectic geometry. Here we consider these pulled-back tensor fields when the
immersed submanifold contains separable states or entangled states. Geometrical
tensors are shown to encode some properties of these states. These results are
not unrelated with criteria already available in the literature. We explicitly
deal with some of these relations.Comment: 16 pages, 1 figure, to appear in Int. J. Geom. Meth. Mod. Phy
Multiple scattering effects in quasi free scattering from halo nuclei: a test to Distorted Wave Impulse Approximation
Full Faddeev-type calculations are performed for Be breakup on proton
target at 38.4, 100, and 200 MeV/u incident energies. The convergence of the
multiple scattering expansion is investigated. The results are compared with
those of other frameworks like Distorted Wave Impulse Approximation that are
based on an incomplete and truncated multiple scattering expansion.Comment: 7 pages, 16 figures, to be published in Phys. Rev.
- …