910 research outputs found
Core-collapse supernovae ages and metallicities from emission-line diagnostics of nearby stellar populations
Massive stars are the main objects that illuminate H II regions and they
evolve quickly to end their lives in core-collapse supernovae (CCSNe). Thus it
is important to investigate the association between CCSNe and H II regions. In
this paper, we present emission line diagnostics of the stellar populations
around nearby CCSNe, that include their host H II regions, from the PMAS/PPAK
Integral-field Supernova hosts COmpilation (PISCO). We then use BPASS stellar
population models to determine the age, metallicity and gas parameters for H II
regions associated with CCSNe, contrasting models that consider either single
star evolution alone or incorporate interacting binaries. We find binary-star
models, that allow for ionizing photon loss, provide a more realistic fit to
the observed CCSN hosts with metallicities that are closer to those derived
from the oxygen abundance in O3N2. We also find that type II and type Ibc SNe
arise from progenitor stars of similar age, mostly from 7 to 45 Myr, which
corresponds to stars with masses < 20 solar mass . However these two types SNe
have little preference in their host environment metallicity measured by oxygen
abundance or in progenitor initial mass. We note however that at lower
metallicities supernovae are more likely to be of type II.Comment: 22 pages, 19 Figures, 6 Tables. Accepted by MNRAS. Comments welcom
Unresolved versus resolved: testing the validity of young simple stellar population models with VLT/MUSE observations of NGC 3603
CONTEXT. Stellar populations are the building blocks of galaxies including
the Milky Way. The majority, if not all extragalactic studies are entangled
with the use of stellar population models given the unresolved nature of their
observation. Extragalactic systems contain multiple stellar populations with
complex star formation histories. However, their study is mainly based upon the
principles of simple stellar populations (SSP). Hence, it is critical to
examine the validity of SSP models. AIMS. This work aims to empirically test
the validity of SSP models. This is done by comparing SSP models against
observations of spatially resolved young stellar population in the
determination of its physical properties, i.e. age and metallicity. METHODS.
Integral field spectroscopy of a young stellar cluster in the Milky Way, NGC
3603, is used to study the properties of the cluster both as a resolved and
unresolved stellar population. The unresolved stellar population is analysed
using the H equivalent width as an age indicator, and the ratio of
strong emission lines to infer metallicity. In addition, spectral energy
distribution (SED) fitting using STARLIGHT, is used to infer these properties
from the integrated spectrum. Independently, the resolved stellar population is
analysed using the color-magnitude diagram (CMD) for age and metallicity
determination. As the SSP model represents the unresolved stellar population,
the derived age and metallicity are put to test whether they agree with those
derived from resolved stars. RESULTS. The age and metallicity estimate of NGC
3603 derived from integrated spectroscopy are confirmed to be within the range
of those derived from the CMD of the resolved stellar population, including
other estimates found in the literature. The result from this pilot study
supports the reliability of SSP models for studying unresolved young stellar
populations.Comment: 9 pages, 5 figures, accepted to A&
The pursuit of the Hubble Constant using Type II Supernovae
The use of multiple independent methods with their own systematic
uncertainties is crucial for resolving the ongoing tension between local and
distant measurements of the Hubble constant (). While type Ia supernovae
(SNe Ia) have historically been the most widely used distance indicators,
recent studies have shown that type II supernovae (SNe II) can provide
independent measurements of extragalactic distances with different systematic
uncertainties. Unlike SNe Ia, the progenitors of SNe II are well understood,
arising from the explosion of red supergiants in late-type galaxies via
core-collapse. While SNe II do not exhibit the same level of uniformity in peak
luminosity as SNe Ia, their differences can be calibrated using theoretical or
empirical methods. Overall, this chapter presents a comprehensive overview of
the use of SNe II as extragalactic distance indicators, with a particular focus
on their application to measuring and addressing the Hubble tension. We
describe the underlying theory of each method, discuss the challenges
associated with them, including uncertainties in the calibration of the
supernova absolute magnitude, and present a comprehensive list of the most
updated Hubble constant measurements.Comment: Invited chapter for the edited book "Hubble Constant Tension" (Eds.
E. Di Valentino and D. Brout, Springer Singapore, expected in 2024
Uncertainties in gas kinematics arising from stellar continuum modelling in integral field spectroscopy data: the case of NGC2906 observed with MUSE/VLT
We study how the use of several stellar subtraction methods and line fitting
approaches can affect the derivation of the main kinematic parameters (velocity
and velocity dispersion fields) of the ionized gas component. The target of
this work is the nearby galaxy NGC 2906, observed with the MUSE instrument at
Very Large Telescope. A sample of twelve spectra is selected from the inner
(nucleus) and outer (spiral arms) regions, characterized by different
ionization mechanisms. We compare three different methods to subtract the
stellar continuum (FIT3D, STARLIGHT and pPXF), combined with one of the
following stellar libraries: MILES, STELIB and GRANADA+MILES. The choice of the
stellar subtraction method is the most important ingredient affecting the
derivation of the gas kinematics, followed by the choice of the stellar library
and by the line fitting approach. In our data, typical uncertainties in the
observed wavelength and width of the H\alpha and [NII] lines are of the order
of _rms \sim 0.1\AA\ and _rms \sim 0.2\AA\ (\sim 5
and 10km/s, respectively). The results obtained from the [NII] line seem to be
slightly more robust, as it is less affected by stellar absorption than
H\alpha. All methods considered yield statistically consistent measurements
once a mean systemic contribution
\Delta\bar\lambda=\Delta\bar\sigma=0.2xDelta_{MUSE} is added in quadrature to
the line fitting errors, where \Delta_{MUSE} = 1.1\AA\ \sim 50 km/s denotes the
instrumental resolution of the MUSE spectra. Although the subtraction of the
stellar continuum is critical in order to recover line fluxes, any method
(including none) can be used in order to measure the gas kinematics, as long as
an additional component of 0.2 x Delta_MUSE is added to the error budget.Comment: 20 pages, 14 figure
Unraveling the Infrared Transient VVV-WIT-06: The Case for the Origin as a Classical Nova
Indexación: Scopus.E.Y.H. acknowledges the support provided by the National Science Foundation under Grant No. AST-1613472 and by the Florida Space Grant Consortium. L.G. acknowledges support from the FINCA visitor programme. The research work at the Physical Research Laboratory is funded by the Department of Space, Government of India. Facility: Magellan: Baade(FIRE).The enigmatic near-infrared transient VVV-WIT-06 underwent a large-amplitude eruption of unclear origin in 2013 July. Based on its light curve properties and late-time post-outburst spectra, various possibilities have been proposed in the literature for the origin of the object, namely a Type I supernova, a classical nova (CN), or a violent stellar merger event. We show that, of these possibilities, an origin in a CN outburst convincingly explains the observed properties of VVV-WIT-06. We estimate that the absolute K-band magnitude of the nova at maximum was M k = -8.2 ±0.5, its distance d = 13.35 ±2.18 kpc, and the extinction A v = 15.0 ±0.55 mag. © 2018. The American Astronomical Society. All rights reserved.https://iopscience.iop.org/article/10.3847/1538-4357/aae5d
Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy
Observationally, supernovae (SNe) are divided into subclasses pertaining to
their distinct characteristics. This diversity reflects the diversity in the
progenitor stars. It is not entirely clear how different evolutionary paths
leading massive stars to become a SN are governed by fundamental parameters
such as progenitor initial mass and metallicity. This paper places constraints
on progenitor initial mass and metallicity in distinct core-collapse SN
subclasses, through a study of the parent stellar populations at the explosion
sites. Integral field spectroscopy (IFS) of 83 nearby SN explosion sites with a
median distance of 18 Mpc has been collected and analysed, enabling detection
and spectral extraction of the parent stellar population of SN progenitors.
From the parent stellar population spectrum, the initial mass and metallicity
of the coeval progenitor are derived by means of comparison to simple stellar
population models and strong-line methods. Additionally, near-infrared IFS was
employed to characterise the star formation history at the explosion sites. No
significant metallicity differences are observed among distinct SN types. The
typical progenitor mass is found to be highest for SN Ic, followed by type Ib,
then types IIb and II. SN IIn is the least associated with young stellar
populations and thus massive progenitors. However, statistically significant
differences in progenitor initial mass are observed only when comparing SNe IIn
with other subclasses. Stripped-envelope SN progenitors with initial mass
estimate lower than 25~ are found; these are thought to be the result
of binary progenitors. Confirming previous studies, these results support the
notion that core-collapse SN progenitors cannot arise from single-star channel
only, and both single and binary channels are at play in the production of
core-collapse SNe. [ABRIDGED]Comment: 18 pages, 10 figures, accepted to A&
Evidence of ongoing radial migration in NGC 6754: Azimuthal variations of the gas properties
Understanding the nature of spiral structure in disk galaxies is one of the
main, and still unsolved questions in galactic astronomy. However, theoretical
works are proposing new testable predictions whose detection is becoming
feasible with recent development in instrumentation. In particular, streaming
motions along spiral arms are expected to induce azimuthal variations in the
chemical composition of a galaxy at a given galactic radius. In this letter we
analyse the gas content in NGC 6754 with VLT/MUSE data to characterise its 2D
chemical composition and H line-of-sight velocity distribution. We find
that the trailing (leading) edge of the NGC 6754 spiral arms show signatures of
tangentially-slower, radially-outward (tangentially-faster, radially-inward)
streaming motions of metal-rich (poor) gas over a large range of radii. These
results show direct evidence of gas radial migration for the first time. We
compare our results with the gas behaviour in a -body disk simulation
showing spiral morphological features rotating with a similar speed as the gas
at every radius, in good agreement with the observed trend. This indicates that
the spiral arm features in NGC 6754 may be transient and rotate similarly as
the gas does at a large range of radii.Comment: 8 pages, 4 figures, accepted for publication in ApJL 2016 September
2
- …