6 research outputs found

    Thermal Lattice Boltzmann Methods for the Simulation of Turbulent Flows with Conjugate Heat Transfer – Application to Refrigerated Vehicles

    Get PDF
    In dieser Arbeit wird eine thermische Lattice-Boltzmann-Methode (TLBM) für die instationäre Simulation turbulenter Strömungen mit natürlicher Konvektion und konjugierter Wärmeübertragung vorgestellt. Turbulente Strömungen mit ihren chaotischen Druck- und Geschwindigkeitsschwankungen stellen eine besondere Herausforderung für numerische Simulationen dar, wobei turbulente Strömungen, angetrieben durch thermische Auftriebskräfte, eine besonders schwierige Aufgabe darstellen. Wie in dieser Arbeit gezeigt wird, ermöglicht TLBM Large Eddy Simulationen (LES) solcher Probleme im industriellen und technischen Maßstab unter Verwendung eines Smagorinsky-Feinstruktur-Modells und unter Ausnutzung seiner intrinsischen Parallelisierbarkeit sowie der Möglichkeit, mehrere tausend Prozessorkerne zu verwenden. Die Eignung der vorliegenden Methode wird in dieser Arbeit anhand von Anwendungen zur Simulation der Innenluftströmung und der Isolationseffizienz eines Kühlwagens, des Wärmetransports im Luftspalt zwischen Rotor und Stator bei Elektromotoren, der Weiterentwicklung hocheffizienter Isolation auf der Basis von Vakuumisolationspaneelen (VIP) und Latentwärmespeichern sowie deren Anwendung in Kühlwagen gezeigt. Eine umfassende Validierung der Methode und ihrer Implementierung im Open-Source-Framework OpenLB wird durchgeführt. Gitterkonvergenz zweiter Ordnung wird gegen das analytische Porous Plate Problem demonstriert, während stabile Simulationen auch bei grober Diskretisierung mit hohen Reynolds- und Rayleigh-Zahlen erreicht werden. Eine sehr gute Übereinstimmung wird für natürliche Konvektion in einem quadratischen Hohlraum, ein bekannter Benchmark-Fall, vom laminaren zum turbulenten Regime mit 10^3 <= Ra <= 10^10 und bei Auflösungen von y+ ~ 2 gezeigt. Im ersten Teil der Ergebnisse werden Simulationen eines leeren Kühlaufbaus für einen Kühllastwagen vorgestellt. Das Strömungsfeld und der Wärmeübergang innerhalb eines gegebenen Kühllastwagens zeigt eine sehr gute Übereinstimmung mit den Messergebnissen, insbesondere den experimentellen Daten für ein Kühlfahrzeug bei Re ~ 53000 an vier charakteristischen Geschwindigkeits- und 13 Temperaturpositionen im Lastwagen. Die Wärmeübertragung durch die Wände wird in den Simulationen durch konjugierte Wärmeübertragung aufgelöst. Dies ermöglicht nun die präzise Vorhersage von Wärmeströmen nahe von Nusselt-Korrelationen für den gegebenen Aufbau, aber - im Gegensatz zu gewöhnlichen Nusselt-Korrelationen - wird der Wärmestrom in der Simulation räumlich aufgelöst. Im zweiten Teil der Ergebnisse wird die Strömung und der Wärmeübergang in einem Ringspalt mit innen rotierendem Zylinder untersucht. Die besondere Herausforderung bei der Simulation dieser Taylor-Couette-Strömung ist die Bildung von Taylor-Wirbeln, die durch ihre Rotation senkrecht zur Hauptströmungsrichtung den entsprechenden Wärmeübergang deutlich erhöhen. Detaillierte instationäre Simulationen werden über einen weiten Drehzahlbereich von fast schleichender Strömungen bis hin zum Auftreten von Taylor-Wirbeln durchgeführt. Es wird eine gute Übereinstimmung mit bisherigen Ergebnissen für die Strömungsstrukturen und die Verbesserung des Wärmeübergangs durch Taylor-Wirbel festgestellt. Insbesondere wird die vorliegende Methode mit Messungen, einer Korrelation und Simulationen unter Verwendung des Scherspannungstransport-Turbulenzmodells (SST) verglichen. Besonderes Augenmerk wird auf die Vorhersage der kritischen Taylor-Zahl gelegt. Während direkte numerische Simulationen (DNS) mit LBM die kritische Taylor-Zahl aus den Experimenten nahezu identisch vorhersagen, wird sie von LBM-LES leicht und vom SST-Modell weiter überschätzt, was auf die übermäßig dissipative Natur der Turbulenzmodelle für die Transition zurückzuführen ist. Im dritten Teil der Ergebnisse werden innovative Konzepte für verbesserte, nachhaltigere Kühlfahrzeuge numerisch untersucht. Um den Kraftstoffverbrauch und die damit verbundenen Emissionen zu reduzieren, werden zwei Ansätze als vielversprechend angesehen: (a) der Einbau von Vakuum-Isolationspaneelen (VIP) in die Wände des Kühlkoffers und (b) die Einführung eines Latentwärmespeichers (LHS) zum Austausch der kraftstoffbetriebenen Klimaanlage (AC). Die Verwendung des vorliegenden TLBM erlaubt in den Simulationen die Auflösung der durch die AC und die natürliche Konvektion induzierten turbulenten Luftströmung, des Wärmeflusses innerhalb der Isolierwände und der tiefgefrorenen Ladung. Dies liefert neue Erkenntnisse über den Einfluss der Konzepte auf die Wärmeübertragung in verschiedenen Kühlaufbauten. Die Simulationen zeigen einen stark reduzierten und homogenisierten einströmenden Wärmestrom für das kombinierte PUR- und VIP-Isoliermaterial im Vergleich zu einer reinen PUR-Isolierung. Die Dämmung des Kühlaufbaus mit VIPs halbiert daher die erforderliche Kühlenergie. Dies ermöglicht den Ersatz der AC durch einen LHS in Dachnähe und ein zusätzliches Lüftungssystem mit deutlich geringerer Gesamtleistung. Unter Berücksichtigung der Temperaturhomogenität von Tiefkühlprodukten wird eine leichte Umströmung des Kühlgutes als notwendig erachtet. Die maximal zulässige Ausfallzeit der AC wird in den Simulationen mit jeweils ca. 3,3 min (PUR), 8 min (PUR+VIP) und 11 min (PUR+VIP+LHS) ermittelt. Im vierten Teil der Ergebnisse wird eine LBM zur Simulation des Schmelzens und des konjugierten Wärmeübergangs auf der Basis des Transports der Gesamtenthalpie vorgestellt, welche bei Validierung gegen die analytische Lösung des zeitabhängigen Stefan-Problems präzise Ergebnisse liefert. Die in dieser Arbeit entwickelte Methode zeigt geringe Grenzflächendiffusion für einen weiten Bereich von Relaxationszeiten und Stefan-Zahlen. Weiterhin wird eine enge Übereinstimmung für das Schmelzen von Gallium einschließlich der natürlichen Konvektion in 2D und 3D mit Messungen und Simulationen mit unterschiedlichen Ansätzen gezeigt. Das Modell wird ferner auf das Schmelzen von Paraffin in zwei komplexen Metallschaumgeometrien angewendet. Es wird eine Voxel-basierte parallele Vernetzung vorgestellt, die eine schnelle und automatisierte Verarbeitung der komplexen Geometrie in wenigen Minuten ermöglicht. Die Simulationen erfassen erfolgreich den materialübergreifenden Wärmetransfer in 3D, wobei die Wärmeleitfähigkeit des Schaums mehr als 1000-mal größer als die des Paraffins ist. Die Form der Schmelzfront und der Einfluss der spezifischen Oberfläche der verschiedenen Metallschäume stehen in enger Übereinstimmung mit früheren Simulationen

    OpenLB—Open source lattice Boltzmann code

    Get PDF
    We present the OpenLB package, a C++ library providing a flexible framework for lattice Boltzmann simulations. The code is publicly available and published under GNU GPLv2, which allows for adaption and implementation of additional models. The extensibility benefits from a modular code structure achieved e.g. by utilizing template meta-programming. The package covers various methodical approaches and is applicable to a wide range of transport problems (e.g. fluid, particulate and thermal flows). The built-in processing of the STL file format furthermore allows for the simple setup of simulations in complex geometries. The utilization of MPI as well as OpenMP parallelism enables the user to perform those simulations on large-scale computing clusters. It requires a minimal amount of dependencies and includes several benchmark cases and examples. The package presented here aims at providing an open access platform for both, applicants and developers, from academia as well as industry, which facilitates the extension of previous implementations and results to novel fields of application for lattice Boltzmann methods. OpenLB was tested and validated over several code reviews and publications. This paper summarizes the findings and gives a brief introduction to the underlying concepts as well as the design of the parallel data structure
    corecore