971 research outputs found

    Recolha e investigação de metabólitos secundários de organismos marinhos de duas ilhas açoreanas, Faial e São Jorge.

    Get PDF
    In March and April of 1997 a total of 35 samples of marine organisms were collected from the Azorean Islands of Faial and São Jorge. These samples included 3 species of Chlorophyta, 7 species of Phaeophyta, 10 species of Rhodophyta, 2 species of Chordata, 3 species of Mollusca, and 7 species of Porifera. Of these samples Laxosuberites rugosus (Porifera), and Pachymatisma johnstonia (Porifera), are new records for the Azores. Secondary metabolite investigations of a number of these samples led to the isolation of para-hydroxybenzyl cyanide from the sponge Laxosuberites rugosus, and oxindol from the sponge Tedania anhelans. Both these compounds are reported here from the marine environment for the first time. These compounds were assessed for their human immunodeficiency virus type 1 reverse transcriptase (HIV-1-RT) and tyrosine kinase (TK) inhibition activities, and para-hydroxybenzyl cyanide found to inhibit the activity of TK to 64% at the 200 Fg/ml level. This is the first report of the TK activity of parahydroxybenzyl cyanide

    Draft Genome Sequences of the Obligatory Marine Myxobacterial Strains Enhygromyxa salina SWB005 and SWB007

    Get PDF
    The two marine myxobacterial strains Enhygromyxa salina SWB005 and SWB007 were isolated from coastal soil samples using Escherichia coli as bait for these predatory strains. These strains produce unique specialized metabolites. Genomes were assembled into 312 contigs for E. salina SWB005 (9.0 Mbp) and 192 contigs for E. salina SWB007 (10.6 Mbp)

    RXFP1 Receptor Activation by Relaxin-2 Induces Vascular Relaxation in Mice via a Gαi2-Protein/PI3Kß/γ/Nitric Oxide-Coupled Pathway

    Get PDF
    Background: Relaxins are small peptide hormones, which are novel candidate molecules that play important roles in cardiometablic syndrome. Relaxins are structurally related to the insulin hormone superfamily, which provide vasodilatory effects by activation of G-protein-coupled relaxin receptors (RXFPs) and stimulation of endogenous nitric oxide (NO) generation. Recently, relaxin could be demonstrated to activate Gi proteins and phosphoinositide 3-kinase (PI3K) pathways in cultured endothelial cells in vitro. However, the contribution of the Gi-PI3K pathway and their individual components in relaxin-dependent relaxation of intact arteries remains elusive.Methods: We used Gαi2- (Gnai2-/-) and Gαi3-deficient (Gnai3-/-) mice, pharmacological tools and wire myography to study G-protein-coupled signaling pathways involved in relaxation of mouse isolated mesenteric arteries by relaxins. Human relaxin-1, relaxin-2, and relaxin-3 were tested.Results: Relaxin-2 (∼50% relaxation at 10-11 M) was the most potent vasodilatory relaxin in mouse mesenteric arteries, compared to relaxin-1 and relaxin-3. The vasodilatory effects of relaxin-2 were inhibited by removal of the endothelium or treatment of the vessels with N (G)-nitro-L-arginine methyl ester (L-NAME, endothelial nitric oxide synthase (eNOS) inhibitor) or simazine (RXFP1 inhibitor). The vasodilatory effects of relaxin-2 were absent in arteries of mice treated with pertussis toxin (PTX). They were also absent in arteries isolated from Gnai2-/- mice, but not from Gnai3-/- mice. The effects were not affected by FR900359 (Gαq protein inhibitor) or PI-103 (PI3Kα inhibitor), but inhibited by TGX-221 (PI3Kβ inhibitor) or AS-252424 (PI3Kγ inhibitor). Simazine did not influence the anti-contractile effect of perivascular adipose tissue.Conclusion: Our data indicate that relaxin-2 produces endothelium- and NO-dependent relaxation of mouse mesenteric arteries by activation of RXFP1 coupled to Gi2-PI3K-eNOS pathway. Targeting vasodilatory Gi-protein-coupled RXFP1 pathways may provide promising opportunities for drug discovery in endothelial dysfunction and cardiometabolic disease

    Marine Myxobacteria as a Source of Antibiotics—Comparison of Physiology, Polyketide-Type Genes and Antibiotic Production of Three New Isolates of Enhygromyxa salina

    Get PDF
    Three myxobacterial strains, designated SWB004, SWB005 and SWB006, were obtained from beach sand samples from the Pacific Ocean and the North Sea. The strains were cultivated in salt water containing media and subjected to studies to determine their taxonomic status, the presence of genes for the biosynthesis of polyketides and antibiotic production. 16S rDNA sequence analysis revealed the type strain Enhygromyxa salina SHK-1T as their closest homolog, displaying between 98% (SWB005) and 99% (SWB004 and SWB006) sequence similarity. All isolates were rod-shaped cells showing gliding motility and fruiting body formation as is known for myxobacteria. They required NaCl for growth, with an optimum concentration of around 2% [w/v]. The G + C-content of genomic DNA ranged from 63.0 to 67.3 mol%. Further, the strains were analyzed for their potential to produce polyketide-type structures. PCR amplified ketosynthase-like gene fragments from all three isolates enhances the assumption that these bacteria produce polyketides. SWB005 was shown to produce metabolites with prominent antibacterial activity, including activity towards methicillin resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE)

    Antimicrobial Potential of Bacteria Associated with Marine Sea Slugs from North Sulawesi, Indonesia

    Get PDF
    Nudibranchia, marine soft-bodied organisms, developed, due to the absence of a protective shell, different strategies to protect themselves against putative predators and fouling organisms. One strategy is to use chemical weapons to distract predators, as well as pathogenic microorganisms. Hence, these gastropods take advantage of the incorporation of chemical molecules. Thereby the original source of these natural products varies; it might be the food source, de novo synthesis from the sea slug, or biosynthesis by associated bacteria. These bioactive molecules applied by the slugs can become important drug leads for future medicinal drugs. To test the potential of the associated bacteria, the latter were isolated from their hosts, brought into culture and extracts were prepared and tested for antimicrobial activities. From 49 isolated bacterial strains 35 showed antibiotic activity. The most promising extracts were chosen for further testing against relevant pathogens. In that way three strains showing activity against methicillin resistant Staphylococcus aureus and one strain with activity against enterohemorrhagic Escherichia coli, respectively, were identified. The obtained results indicate that the sea slug associated microbiome is a promising source for bacterial strains, which hold the potential for the biotechnological production of antibiotics

    The experimental power of FR900359 to study Gq-regulated biological processes

    Get PDF
    Despite the discovery of heterotrimeric αβγ G proteins ∼25 years ago, their selective perturbation by cell-permeable inhibitors remains a fundamental challenge. Here we report that the plant-derived depsipeptide FR900359 (FR) is ideally suited to this task. Using a multifaceted approach we systematically characterize FR as a selective inhibitor of Gq/11/14 over all other mammalian Gα isoforms and elaborate its molecular mechanism of action. We also use FR to investigate whether inhibition of Gq proteins is an effective post-receptor strategy to target oncogenic signalling, using melanoma as a model system. FR suppresses many of the hallmark features that are central to the malignancy of melanoma cells, thereby providing new opportunities for therapeutic intervention. Just as pertussis toxin is used extensively to probe and inhibit the signalling of Gi/o proteins, we anticipate that FR will at least be its equivalent for investigating the biological relevance of Gq. Pertussis toxin is used extensively for perturbing Gαi/o pathways in the study of physiology and disease, but an equivalent inhibitor of Gαq signalling is not currently available to the research community. Here the authors characterize FR900359 as a specific Gq inhibitor and demonstrate its utility to dissect GPCR signalling and its potential to inhibit melanoma cells

    Targeted inhibition of Gq signaling induces airway relaxation in mouse models of asthma

    Get PDF
    Obstructive lung diseases are common causes of disability and death worldwide. A hallmark feature is aberrant activation of Gq protein–dependent signaling cascades. Currently, drugs targeting single G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptors (GPCRs) are used to reduce airway tone. However, therapeutic efficacy is often limited, because various GPCRs contribute to bronchoconstriction, and chronic exposure to receptor-activating medications results in desensitization. We therefore hypothesized that pharmacological Gq inhibition could serve as a central mechanism to achieve efficient therapeutic bronchorelaxation. We found that the compound FR900359 (FR), a membrane-permeable inhibitor of Gq, was effective in silencing Gq signaling in murine and human airway smooth muscle cells. Moreover, FR both prevented bronchoconstrictor responses and triggered sustained airway relaxation in mouse, pig, and human airway tissue ex vivo. Inhalation of FR in healthy wild-type mice resulted in high local concentrations of the compound in the lungs and prevented airway constriction without acute effects on blood pressure and heart rate. FR administration also protected against airway hyperreactivity in murine models of allergen sensitization using ovalbumin and house dust mite as allergens. Our findings establish FR as a selective Gq inhibitor when applied locally to the airways of mice in vivo and suggest that pharmacological blockade of Gq proteins may be a useful therapeutic strategy to achieve bronchorelaxation in asthmatic lung disease

    Rational design of a heterotrimeric G protein α subunit with artificial inhibitor sensitivity

    Get PDF
    Transmembrane signals initiated by a range of extracellular stimuli converge on members of the Gq family of heterotrimeric G proteins, which relay these signals in target cells. Gq family G proteins comprise Gq, G11, G14, and G16, which upon activation mediate their cellular effects via inositol lipid– dependent and –independent signaling to control fundamental processes in mammalian physiology. To date, highly specific inhibition of Gq/11/14 signaling can be achieved only with FR900359 (FR) and YM-254890 (YM), two naturally occurring cyclic depsipeptides. To further development of FR or YM mimics for other G subunits, we here set out to rationally design G16 proteins with artificial FR/YM sensitivity by introducing an engineered depsipeptide-binding site. Thereby we permit control of G16 function through ligands that are inactive on the WT protein. Using CRISPR/Cas9-generated Gq/G11-null cells and loss- and gain-of-function mutagenesis along with label-free whole-cell biosensing, we determined the molecular coordinates for FR/YM inhibition of Gq and transplanted these to FR/YM-insensitive G16. Intriguingly, despite having close structural similarity, FR and YM yielded biologically distinct activities: it was more difficult to perturb Gq inhibition by FR and easier to install FR inhibition onto G16 than perturb or install inhibition with YM. A unique hydrophobic network utilized by FR accounted for these unexpected discrepancies. Our results suggest that non-Gq/11/14 proteins should be amenable to inhibition by FR scaffold– based inhibitors, provided that these inhibitors mimic the interaction of FR with G proteins harboring engineered FR-binding sites

    The adhesion G protein-coupled receptor GPR56/ADGRG1 is an inhibitory receptor on human NK cells

    Get PDF
    Natural killer (NK) cells possess potent cytotoxic mechanisms that need to be tightly controlled. We here explored the regulation and function of GPR56/ADGRG1, an adhesion G protein-coupled receptor implicated in developmental processes and expressed distinctively in mature NK cells. Expression of GPR56 was triggered by Hobit, a homolog of Blimp-1, and declined upon cell activation. Through studying NK cells from polymicrogyria patients with disease-causing mutations in the ADGRG1 gene, encoding GPR56, and NK-92 cells ectopically expressing the receptor, we found that GPR56 negatively regulates immediate effector functions, including production of inflammatory cytokines and cytolytic proteins, degranulation, and target cell killing. GPR56 pursues this activity by associating with the tetraspanin CD81. We conclude that GPR56 inhibits natural cytotoxicity of human NK cells

    Soil Bacteria Isolated From Tunisian Arid Areas Show Promising Antimicrobial Activities Against Gram-Negatives

    Get PDF
    Arid regions show relatively fewer species in comparison to better-watered biomes, but the competition for the few nutrients is very distinct. Here, in total 373 bacterial strains were isolated from rhizospheric soils obtained from three different sampling sites in Tunisia. Their potential for the production of antimicrobial compounds was evaluated. Bacterial strains, showing antibacterial activity against pathogenic bacteria, were isolated from all three sites, one strain from the Bou-Hedma national park, 15 strains from Chott-Djerid, and 13 strains from Matmata, respectively. The dominant genus was Bacillus, with 27 out of 29 strains. Most interestingly, 93% of the isolates showed activity against Gram-positive and Gram-negative test bacteria. Strain Bacillus sp. M21, harboring high inhibitory potential, even against clinical isolates of Gram-negative bacteria, was analyzed in detail to enable purification and identification of the bioactive compound responsible for its bioactivity. Subsequent HPLC-MS and NMR analyses resulted in the identification of 1-acetyl-β-carboline as active component. Furthermore, fungicides of the bacillomycin and fengycin group, which in addition show antibiotic effects, were identified. This work highlights the high potential of the arid-adapted strains for the biosynthesis of specialized metabolites and suggest further investigation of extreme environments, since they constitute a promising bioresource of biologically active compounds
    corecore