442 research outputs found
Evaluation of the postharvest quality of Cagaita fruits (Eugenia dysenterica DC.) coated with chitosan and associated with refrigeration
Cagaita fruits are subject to seasonality and perishability. This work aims to use scanning electron microscopy (SEM) to evaluate the physicochemical characteristics, texture, color and physical structure of cagaita fruits coated with different chitosan concentrations. The fruits were divided as follows: T0 (uncoated fruits), T1 (fruits coated with 1% (v/v) chitosan), T2 (fruits coated with 2% (v/v) chitosan) and T3 (fruits coated with 3% (v/v) chitosan). They were analyzed at 0, 10, 20 and 30 days of storage. Titratable acidity and soluble solids content showed no conservation of fruit characteristics; they showed better results for uncoated fruits, as well as weight loss, vitamin C and peak strain. The color of cagaita fruits confirmed ripening during storage regardless of treatment. Scanning electron microscopy showed that the film solution did not adhere, as desired, to the cell wall of fruits. As the results of fruits coated with 3% pectin were close to control, further studies should be carried out with higher coating percentages so that the fruit quality is maintained during storage.Keywords: Physical structure, film solution, quality, shelf life
Evolutionary Multi-Objective Design of SARS-CoV-2 Protease Inhibitor Candidates
Computational drug design based on artificial intelligence is an emerging
research area. At the time of writing this paper, the world suffers from an
outbreak of the coronavirus SARS-CoV-2. A promising way to stop the virus
replication is via protease inhibition. We propose an evolutionary
multi-objective algorithm (EMOA) to design potential protease inhibitors for
SARS-CoV-2's main protease. Based on the SELFIES representation the EMOA
maximizes the binding of candidate ligands to the protein using the docking
tool QuickVina 2, while at the same time taking into account further objectives
like drug-likeliness or the fulfillment of filter constraints. The experimental
part analyzes the evolutionary process and discusses the inhibitor candidates.Comment: 15 pages, 7 figures, submitted to PPSN 202
The yeast P5 type ATPase, Spf1, regulates manganese transport into the endoplasmic reticulum
The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn2+ homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn2+ in ∆spf1 cells and an increase following it’s overexpression. In agreement with the observed loss of luminal Mn2+ we could observe concurrent reduction in many Mn2+-related process in the ER lumen. Conversely, cytosolic Mn2+-dependent processes were increased. Together, these data support a role for Spf1p in Mn2+ transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn2+-dependent neurological disorders
Higgs Boson Masses in the Complex NMSSM at One-Loop Level
The Next-to-Minimal Supersymmetric Extension of the Standard Model (NMSSM)
with a Higgs sector containing five neutral and two charged Higgs bosons allows
for a rich phenomenology. In addition, the plethora of parameters provides many
sources of CP violation. In contrast to the Minimal Supersymmetric Extension,
CP violation in the Higgs sector is already possible at tree-level. For a
reliable understanding and interpretation of the experimental results of the
Higgs boson search, and for a proper distinction of Higgs sectors provided by
the Standard Model or possible extensions, the Higgs boson masses have to be
known as precisely as possible including higher-order corrections. In this
paper we calculate the one-loop corrections to the neutral Higgs boson masses
in the complex NMSSM in a Feynman diagrammatic approach adopting a mixed
renormalization scheme based on on-shell and conditions. We study
various scenarios where we allow for tree-level CP-violating phases in the
Higgs sector and where we also study radiatively induced CP violation due to a
non-vanishing phase of the trilinear coupling in the stop sector. The
effects on the Higgs boson phenomenology are found to be significant. We
furthermore estimate the theoretical error due to unknown higher-order
corrections by both varying the renormalization scheme of the top and bottom
quark masses and by adopting different renormalization scales. The residual
theoretical error can be estimated to about 10%
The role of climate, marine influence and sedimentation rates in late-Holocene estuarine evolution (SW Portugal)
Estuaries are sensitive to changes in global to regional sea level, to climate-driven variation in rainfall and to fluvial discharge. In this study, we use source and environmentally sensitive proxies together with radiocarbon dating to examine a 7-m-thick sedimentary record from the Sado estuary accumulated throughout the last 3.6 kyr. The lithofacies, geochemistry and diatom assemblages in the sediments accumulated between 3570 and 3240 cal. BP indicate a mixture between terrestrial and marine sources. The relative contribution of each source varied through time as sedimentation progressed in a low intertidal to high subtidal and low-energy accreting tidal flat. The sedimentation proceeded under a general pattern of drier and higher aridity conditions, punctuated by century-long changes of the rainfall regime that mirror an increase in storminess that affected SW Portugal and Europe. The sediment sequence contains evidence of two periods characterized by downstream displacement of the estuarine/freshwater transitional boundary, dated to 3570-3400 cal. BP and 3300-3240 cal. BP. These are intercalated by one episode where marine influence shifted upstream. All sedimentation episodes developed under high terrestrial sediment delivery to this transitional region, leading to exceptionally high sedimentation rates, independently of the relative expression of terrestrial/marine influences in sediment facies. Our data show that these disturbances are mainly climate-driven and related to variations in rainfall and only secondarily with regional sea-level oscillations. From 3240 cal. BP onwards, an abrupt change in sediment facies is noted, in which the silting estuarine bottom reaches mean sea level and continued accreting until present under prevailing freshwater conditions, the tidal flat changing to an alluvial plain. The environmental modification is accompanied by a pronounced change in sedimentation rate that decreased by two orders of magnitude, reflecting the loss of accommodation space rather than the influence of climate or regional sea-level drivers.FCT by Spanish Ministry of Science and Innovation [SFRH/BD/110270/2015, HAR2014-51830-P, HAR2011-29907-C03-00]FCTPortuguese Foundation for Science and Technology [PTDC/HISARQ/121592/2010]Instituto Dom Luiz-IDL [UID/GEO/50019/2013]info:eu-repo/semantics/publishedVersio
- …