538 research outputs found

    Comparison of Optimized Control Strategies of a High-Speed Traction Machine with Five Phases and Bi-Harmonic Electromotive Force

    Get PDF
    The purpose of the paper is to present the potentialities in terms of the control of a new kind of PM synchronous machine. With five phases and electromotive forces whose first (E1) and third (E3) harmonics are of similar amplitude, the studied machine, so-called bi-harmonic, has properties that are interesting for traction machine payload. With three-phase machines, supplied by a mono-harmonic sinusoidal current, the weak number of freedom degrees limits the strategy of control for traction machines especially when voltage saturation occurs at high speeds. As the torque is managed for three-phase machines by a current with only one harmonic, flux weakening is necessary to increase speed when the voltage limitation is reached. The studied five-phase machine, thanks to the increase in the number of freedom degrees for control, aims to alleviate this fact. In his paper, three optimized control strategies are compared in terms of efficiency and associated torque/speed characteristics. These strategies take into account numerous constraints either from the supply (with limited voltage) or from the machine (with limited current densities and maximum acceptable copper, iron and permanent magnet losses). The obtained results prove the wide potentialities of such a kind of five-phase bi-harmonic machine in terms of control under constraints. It is thus shown that the classical Maximum Torque Per Ampere (MTPA) strategy developed for the three-phase machine is clearly not satisfying on the whole range of speed because of the presence of iron losses whose values can no more be neglected at high speeds. Two other strategies have been then proposed to be able to manage the compromises, at high speeds, between the high values of torque and efficiency under the constraints of admissible total losses either in the rotor or in the stator

    Quantitative Comparisons of Outer-Rotor Permanent Magnet Machines of Different Structures/Phases for In-Wheel Electrical Vehicle Application

    Get PDF
    As one of the key components, low-speed direct-drive in-wheel machines with high compact volume and high torque density are important for the traction system of electric vehicles (EVs). This paper introduces four different types of outer-rotor permanent magnet motors for EVs, including one five-phase SPM machine, one three-phase IPM machine with V-shaped PMs, one seven-phase axial flux machine (AFM) of sandwich structure and finally one hybrid flux (radial and axial) machine with a third rotor with V-shaped PMs added to the AFM. Firstly, the design criteria and basic operation principle are compared and discussed. Then, the key properties are analyzed using the Finite Element Method (FEM). The electromagnetic properties of the four fractional slot tooth concentrated winding in-wheel motors with similar dimensions are quantitatively compared, including air-gap flux density, electromotive force, field weakening capability, torque density, losses, and fault tolerant capability. The results show that the multi-phase motors have high torque density and high fault tolerance and are suitable for direct drive applications in EVs.This research was funded by National Natural Science Foundation of China, grant number 52177052, and by the Natural Science Foundation of Shandong Province, grant number ZR2020ME207

    Fault Tolerant 7-phase Hybrid Excitation Permanent Magnet Machine

    Get PDF
    This paper presents a novel 7-phase hybrid excitation permanent magnet (HEPM) machine with three rotors around one stator. Two rotors with PMs axially magnetized and the third rotor with PMs radially magnetized. Thanks to the addition of the third rotor, the inactive end-windings in the configuration with two rotors are then becoming active with a contribution to the torque with an increase of 30%. The impact of the third rotor on the torque density and on the pulsating torques is presented. The fault-tolerant characteristics of the proposed machine are also presented, which proves the interests of this machine for low speed applications

    Case series of progressive familial intrahepatic cholestasis type 3: Characterization of variants in ABCB4 in China

    Get PDF
    ObjectiveTo improve the accuracy of the diagnosis of familial progressive intrahepatic cholestasis type 3 (PFIC3, https://www.omim.org/entry/602347).Materials and methodsBetween September 2019 and March 2021, we recruited four patients with PFIC3 from two liver centers in East China. Molecular genetic findings of ATP-binding cassette subfamily B member 4 [ATP binding cassette transporter A4 (ABCB4), https://www.omim.org/entry/171060] were prospectively examined, and clinical records, laboratory readouts, and macroscopic and microscopic appearances of the liver were analyzed.ResultsFour patients experienced cholestasis, mild jaundice, and elevated levels of serum direct bilirubin, Îł-glutamyltransferase, or total bile acids. All patients had moderate-to-severe liver fibrosis or biliary cirrhosis, and their liver biopsy specimens stained positive with rhodamine. Molecular immunohistochemistry revealed reduced or absent MDR3 expression in all liver specimens. A novel mutation of ABCB4 (c.1560 + 2T > A) was identified in patients with PFIC3, which is of high clinical significance and may help understand mutant ABCB4 pathogenesis.ConclusionMDR3 immunohistochemistry and molecular genetic analyses of ABCB4 are essential for the accurate diagnosis of PFIC3

    Seven-phase Axial And Radial Flux In-wheel Machine With Three Active Air Gaps

    Get PDF
    For in-wheel machine, outer rotor machines appear as a natural solution. Practically these machines are either radial-flux with one rotor or axial-flux with two rotors. The paper is proposing a machine with three outer rotors with two different polarities in order to reduce useless end-windings while keeping an acceptable thickness for the radial-flux rotor and high torque quality. This Hybrid Flux Permanent Magnet original structure (named HFPM) is possible thanks to the use of seven phases. The third rotor can be considered as an option of an initial double-rotor axial-flux machine in order to increase the torque density. First, the machine structure and the winding design are presented; then, based on 3D finite element method, comparison between the two machines, with two or three rotors, are provided in terms of torque densities and qualities

    Fault-tolerant Control for 7-phase Non-sinusoidal Permanent Magnet Machines with One Opened Phase

    Get PDF
    This paper presents new fault-tolerant control strategies for field-oriented control of 7-phase non-sinusoidal permanent magnet (PM) machines supplied by voltage source inverters (VSI). Single phase open-circuit fault is considered. The proposed strategies aim at finding waveforms of current references in natural frame in the way that post-fault currents create the same rotational magnetomotive force (MMF) as in healthy mode. Therefore, in the faulty mode, average torque can be maintained if no current limits are set. The proposed strategies are validated and compared to a previous strategy by numerical results in terms of joule losses, maximum RMS and peak phase currents, maximum phase voltage as well as their controllability with PI controllers

    Torque Optimization of a Seven-Phase Bi-harmonic PMSM in Healthy and Degraded Mode

    Get PDF
    Compared to sinusoidal machines, a bi-harmonic machine (with only two harmonics of similar value in the electromotive force spectrum) can develop torque of comparable values under three kinds of supply: with only first or both first and third sinusoidal currents. Therefore, more degrees of freedom for the control of the machine can be achieved. In this paper, the specificities of a 7-phase bi-harmonic permanent magnet synchronous machine (PMSM) are investigated under different control strategies, such as maximum torque per ampere (MTPA) at low speed and fluxweakening strategies at high speed, both in healthy and faulty operation modes. The fault with one open-circuited phase are taken into account. The current references are calculated in order to maximize the output torque under the constraint on both voltage and current. The performances of the considered machine is validated by numerical results

    Shape-Controlled Synthesis of ZnS Nanostructures: A Simple and Rapid Method for One-Dimensional Materials by Plasma

    Get PDF
    In this paper, ZnS one-dimensional (1D) nanostructures including tetrapods, nanorods, nanobelts, and nanoslices were selectively synthesized by using RF thermal plasma in a wall-free way. The feeding rate and the cooling flow rate were the critical experimental parameters for defining the morphology of the final products. The detailed structures of synthesized ZnS nanostructures were studied through transmission electron microscope, X-ray diffraction, and high-resolution transmission electron microscope. A collision-controlled growth mechanism was proposed to explain the growth process that occurred exclusively in the gas current by a flowing way, and the whole process was completed in several seconds. In conclusion, the present synthetic route provides a facile way to synthesize ZnS and other hexagonal-structured 1D nanostructures in a rapid and scalable way

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages
    • 

    corecore