10 research outputs found

    Identification and characterization of microRNAs expressed in the African malaria vector Anopheles funestus life stages using high throughput sequencing

    Get PDF
    Background: Over the past several years, thousands of microRNAs (miRNAs) have been identified in the genomes of various insects through cloning and sequencing or even by computational prediction. However, the number of miRNAs identified in anopheline species is low and little is known about their role. The mosquito Anopheles funestus is one of the dominant malaria vectors in Africa, which infects and kills millions of people every year. Therefore, small RNA molecules isolated from the four life stages (eggs, larvae, pupae and unfed adult females) of An. funestus were sequenced using next generation sequencing technology. Results: High throughput sequencing of four replicates in combination with computational analysis identified 107 mature miRNA sequences expressed in the An. funestus mosquito. These include 20 novel miRNAs without sequence identity in any organism and eight miRNAs not previously reported in the Anopheles genus but are known in non-anopheles mosquitoes. Finally, the changes in the expression of miRNAs during the mosquito development were determined and the analysis showed that many miRNAs have stage-specific expression, and are co-transcribed and co-regulated during development. Conclusions: This study presents the first direct experimental evidence of miRNAs in An. funestus and the first profiling study of miRNA associated with the maturation in this mosquito. Overall, the results indicate that miRNAs play important roles during the growth and development. Silencing such molecules in a specific life stage could decrease the vector population and therefore interrupt malaria transmission.IS

    Dicer1 Depletion in Male Germ Cells Leads to Infertility Due to Cumulative Meiotic and Spermiogenic Defects

    Get PDF
    Background: Spermatogenesis is a complex biological process that requires a highly specialized control of gene expression. In the past decade, small non-coding RNAs have emerged as critical regulators of gene expression both at the transcriptional and post-transcriptional level. DICER1, an RNAse III endonuclease, is essential for the biogenesis of several classes of small RNAs, including microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs), but is also critical for the degradation of toxic transposable elements. In this study, we investigated to which extent DICER1 is required for germ cell development and the progress of spermatogenesis in mice.Principal Findings: We show that the selective ablation of Dicer1 at the early onset of male germ cell development leads to infertility, due to multiple cumulative defects at the meiotic and post-meiotic stages culminating with the absence of functional spermatozoa. Alterations were observed in the first spermatogenic wave and include delayed progression of spermatocytes to prophase I and increased apoptosis, resulting in a reduced number of round spermatids. The transition from round to mature spermatozoa was also severely affected, since the few spermatozoa formed in mutant animals were immobile and misshapen, exhibiting morphological defects of the head and flagellum. We also found evidence that the expression of transposable elements of the SINE family is up-regulated in Dicer1-depleted spermatocytes.Conclusions/Significance: Our findings indicate that DICER1 is dispensable for spermatogonial stem cell renewal and mitotic proliferation, but is required for germ cell differentiation through the meiotic and haploid phases of spermatogenesis

    A Unique Combination of Male Germ Cell miRNAs Coordinates Gonocyte Differentiation

    Get PDF
    The last 100 years have seen a concerning decline in male reproductive health associated with decreased sperm production, sperm function and male fertility. Concomitantly, the incidence of defects in reproductive development, such as undescended testes, hypospadias and testicular cancer has increased. Indeed testicular cancer is now recognised as the most common malignancy in young men. Such cancers develop from the pre-invasive lesion Carcinoma in Situ (CIS), a dysfunctional precursor germ cell or gonocyte which has failed to successfully differentiate into a spermatogonium. It is therefore essential to understand the cellular transition from gonocytes to spermatogonia, in order to gain a better understanding of the aetiology of testicular germ cell tumours. MicroRNA (miRNA) are important regulators of gene expression in differentiation and development and thus highly likely to play a role in the differentiation of gonocytes. In this study we have examined the miRNA profiles of highly enriched populations of gonocytes and spermatogonia, using microarray technology. We identified seven differentially expressed miRNAs between gonocytes and spermatogonia (down-regulated: miR-293, 291a-5p, 290-5p and 294*, up-regulated: miR-136, 743a and 463*). Target prediction software identified many potential targets of several differentially expressed miRNA implicated in germ cell development, including members of the PTEN, and Wnt signalling pathways. These targets converge on the key downstream cell cycle regulator Cyclin D1, indicating that a unique combination of male germ cell miRNAs coordinate the differentiation and maintenance of pluripotency in germ cells

    Germ Cell-Specific Targeting of DICER or DGCR8 Reveals a Novel Role for Endo-siRNAs in the Progression of Mammalian Spermatogenesis and Male Fertility

    Get PDF
    Small non-coding RNAs act as critical regulators of gene expression and are essential for male germ cell development and spermatogenesis. Previously, we showed that germ cell-specific inactivation of Dicer1, an endonuclease essential for the biogenesis of micro-RNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs), led to complete male infertility due to alterations in meiotic progression, increased spermatocyte apoptosis and defects in the maturation of spermatozoa. To dissect the distinct physiological roles of miRNAs and endo-siRNAs in spermatogenesis, we compared the testicular phenotype of mice with Dicer1 or Dgcr8 depletion in male germ cells. Dgcr8 mutant mice, which have a defective miRNA pathway while retaining an intact endo-siRNA pathway, were also infertile and displayed similar defects, although less severe, to Dicer1 mutant mice. These included cumulative defects in meiotic and haploid phases of spermatogenesis, resulting in oligo-, terato-, and azoospermia. In addition, we found by RNA sequencing of purified spermatocytes that inactivation of Dicer1 and the resulting absence of miRNAs affected the fine tuning of protein-coding gene expression by increasing low level gene expression. Overall, these results emphasize the essential role of miRNAs in the progression of spermatogenesis, but also indicate a role for endo-siRNAs in this process

    RETRACTED ARTICLE: In vitro derivation of mammalian germ cells from stem cells and their potential therapeutic application

    No full text
    corecore