2,134 research outputs found

    Extended stellar kinematics of elliptical galaxies in the Fornax cluster

    Get PDF
    We present extended stellar kinematics for a sample of 13 elliptical galaxies in the Fornax cluster. Major-axis velocity dispersion profiles (VDPs) and rotation curves (RCs) are given for 12 of the galaxies. A major feature of this data is the spatial extension: for 8 galaxies the data extends beyond 1 R_e, and for 5 it extends beyond 2 R_e. Compared to the previously available data, this corresponds to an increase in spatial coverage by a factor from 1 to 5. Five of the ellipticals in the sample turn out to be rotationally-supported systems, having positive rotation parameter log (V/sigma)*. One of these five, and another 3 galaxies from the remaining sample, display evidence for bar-like kinematics. The data indicate that the true number of `dynamically hot' stellar systems, is much lower than previously thought: of the Es in the present sample only 1/4 are confirmed as `pressure-supported' systems. The data reveal a host of individual peculiarities, like: wiggles, strong gradients, and asymmetries in the rotation curve and/or in the velocity dispersion profile, thus showing that the presence of kinematically distinct components and/or triaxiality is a common characteristic of this class of object.Comment: 27 pages, includes 15 eps figures. Accepted for publication in A&A Sup

    Mapping the invisible hand: a body model of a phantom limb

    Get PDF
    After amputation, individuals often have vivid experiences of their absent limb (i.e., a phantom limb). Therefore, one’s conscious image of one’s body cannot depend on peripheral input only (Ramachandran & Hirstein, 1998). However, the origin of phantom sensations is hotly debated. Reports of vivid phantoms in the case of congenital absence of the limb show that memory of former body state is not necessary (Brugger et al., 2000). According to one view, phantoms may reflect innate organization of sensorimotor cortices (Melzack, 1990). Alternatively, phantoms could reflect generalization from viewing other people’s bodies (Brugger et al., 2000), a sensorimotor example of the classic theory that understanding oneself follows from understanding the “generalized other” (Mead, 1934, p. 154). Because phantom limbs cannot be stimulated, sensory testing cannot directly compare visual and somatosensory influences on representations of phantom limbs. Consequently, empirical investigation of phantoms is limited

    Body image distortions following spinal cord injury

    Get PDF
    Background: Following spinal cord injury (SCI) or anaesthesia, people may continue to experience feelings of the size, shape, and posture of their body, suggesting that the conscious body image is not fully determined by immediate sensory signals. How this body image is affected by changes in sensory inputs from, and motor outputs to the body remains unclear. Methods: We tested paraplegic and tetraplegic SCI patients on a task that yields quantitative measures of body image. Participants were presented with an anchoring stimulus on a computer screen and told to imagine that the displayed body part was part of a standing mirror image of themselves. They then identified the position on the screen, relative to the anchor, where each of several parts of their body would be located. Veridical body dimensions were identified based on measurements and photographs of participants. Results: Compared to age-matched controls, paraplegic and tetraplegic patients alike perceived their torso and limbs as elongated relative to their body width. No effects of lesion level were found. Conclusions: The common distortions in body image across patient groups, despite differing SCI levels, imply that a body image may be maintained despite chronic sensory and motor loss. Systematic alterations in body image follow SCI, though our results suggest these may reflect prolonged changes in body posture and wheelchair use, rather than loss of specific sensorimotor pathways. These findings provide new insight into how the body image is maintained, and may prove useful in treatments that intervene to manipulate the body image

    Extended stellar kinematics of elliptical galaxies in the Fornax cluster

    Get PDF
    We present extended stellar kinematics for a sample of elliptical galaxies in the Fornax cluster. Out of the 13 galaxies presented here, five (FCC 119, FCC 136, NGC 1373, NGC 1428, FCC 335) have no previously published kinematical data. Major-axis velocity dispersion profiles (VDPs) and rotation curves (RCs) are given for 12 of the galaxies. A major feature of this data is the spatial extension: for 8 galaxies the data extends beyond 1 R_e, and for 5 it extends beyond 2 R_e. Compared to the previously available data, this corresponds to an increase in spatial coverage by a factor from 1 to 5. The present sample represents 86% of the ellipticals in Fornax brighter than B_T = 15 mag. Five of the ellipticals in the sample turn out to be rotationally-supported systems, having positive rotation parameter log ((V)/(sigma ))(*) . One of these five, and another 3 galaxies from the remaining sample, display evidence for bar-like kinematics. The data indicate that the yes number of ``dynamically hot'' stellar systems, is much lower than previously thought: of the Es in the present sample only 1/4 are confirmed as ``pressure-supported'' systems. The data reveal a host of individual peculiarities, like: wiggles, strong gradients, and asymmetries in the rotation curve and/or in the velocity dispersion profile, thus showing that the presence of kinematically distinct components and/or triaxiality is a common characteristic of this class of object. Based on observations collected at Siding Spring Observatory. Table 3 is presented in electronic form only, and is available from the CDS, Strasbourg via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.htm

    Peripheral artery disease causes consistent gait irregularities regardless of the location of leg claudication pain

    Get PDF
    Highlights Peripheral artery disease (PAD) is a multi-level disease. PAD diffusely impairs the performance of leg muscles. PAD causes similar irregularities in gait biomechanics regardless of where claudication pain is located in the leg. Abstract Background The most common symptom of peripheral artery disease (PAD) is intermittent claudication that involves the calf, thigh, and/or buttock muscles. How the specific location of this leg pain is related to altered gait, however, is unknown. Objectives We hypothesized that because the location of claudication symptoms uniquely affects different leg muscle groups in people with PAD, this would produce distinctive walking patterns. Methods A total of 105 participants with PAD and 35 age-matched older volunteers without PAD (CTRL) were recruited. Participants completed walking impairment questionnaires (WIQ), Gardner-Skinner progressive treadmill tests, the six-minute walk test, and we performed an advanced evaluation of the biomechanics of their overground walking. Participants with PAD were categorized into 4 groups according to their stated pain location(s): calf only (C, n = 43); thigh and calf (TC, n = 18); buttock and calf (BC, n = 15); or buttock, thigh, and calf (BTC, n = 29). Outcomes were compared between CTRL, C, TC, BC and BTC groups using a one-way ANOVA with post-hoc comparisons to identify and assess statistically significant differences. Results There were no significant differences between CTRL, C, TC, BC and BTC groups in distances walked or walking speed when either pain-free or experiencing claudication pain. Each participant with PAD had significantly dysfunctional biomechanical gait parameters, even when pain-free, when compared to CTRL (pain-free) walking data. During pain-free walking, out of the 18 gait parameters evaluated, we only identified significant differences in hip power generation during push-off (in C and TC groups) and in knee power absorption during weight acceptance (in TC and BC groups). There were no between-group differences in gait parameters while people with PAD were walking with claudication pain. Conclusions Our data demonstrate that PAD affects the ischemic lower extremities in a diffuse manner irrespective of the location of claudication symptoms. Database Registration ClinicalTrials.gov NCT01970332

    Owning an overweight or underweight body: distinguishing the physical, experienced and virtual body

    Get PDF
    Our bodies are the most intimately familiar objects we encounter in our perceptual environment. Virtual reality provides a unique method to allow us to experience having a very different body from our own, thereby providing a valuable method to explore the plasticity of body representation. In this paper, we show that women can experience ownership over a whole virtual body that is considerably smaller or larger than their physical body. In order to gain a better understanding of the mechanisms underlying body ownership, we use an embodiment questionnaire, and introduce two new behavioral response measures: an affordance estimation task (indirect measure of body size) and a body size estimation task (direct measure of body size). Interestingly, after viewing the virtual body from first person perspective, both the affordance and the body size estimation tasks indicate a change in the perception of the size of the participant’s experienced body. The change is biased by the size of the virtual body (overweight or underweight). Another novel aspect of our study is that we distinguish between the physical, experienced and virtual bodies, by asking participants to provide affordance and body size estimations for each of the three bodies separately. This methodological point is important for virtual reality experiments investigating body ownership of a virtual body, because it offers a better understanding of which cues (e.g. visual, proprioceptive, memory, or a combination thereof) influence body perception, and whether the impact of these cues can vary between different setups

    Explicit and implicit own’s body and space perception in painful musculoskeletal disorders and rheumatic diseases: a systematic scoping review

    Get PDF
    Background: Pain and body perception are essentially two subjective mutually influencing experiences. However, in the field of musculoskeletal disorders and rheumatic diseases we lack of a comprehensive knowledge about the relationship between body perception dysfunctions and pain or disability. We systematically mapped the literature published about the topics of: a) somatoperception; b) body ownership; and c) perception of space, analysing the relationship with pain and disability. The results were organized around the two main topics of the assessment and treatment of perceptual dysfunctions. Methods: This scoping review followed the six-stage methodology suggested by Arksey and O’Malley. Ten electronic databases and grey literature were systematically searched. The PRISMA Extension for Scoping Reviews was used for reporting results. Two reviewers with different background, independently performed study screening and selection, and one author performed data extraction, that was checked by a second reviewer. Results: Thirty-seven studies fulfilled the eligibility criteria. The majority of studies (68%) concerned the assessment methodology, and the remaining 32% investigated the effects of therapeutic interventions. Research designs, methodologies adopted, and settings varied considerably across studies. Evidence of distorted body experience were found mainly for explicit somatoperception, especially in studies adopting self-administered questionnaire and subjective measures, highlighting in some cases the presence of sub-groups with different perceptual features. Almost half of the intervention studies (42%) provided therapeutic approaches combining more than one perceptual task, or sensory-motor tasks together with perceptual strategies, thus it was difficult to estimate the relative effectiveness of each single therapeutic component. Conclusions: To our knowledge, this is the first attempt to systematically map and summarize this research area in the field of musculoskeletal disorders and rheumatic diseases. Although methodological limitations limit the validity of the evidence obtained, some strategies of assessment tested and therapeutic strategies proposed represent useful starting points for future research. This review highlights preliminary evidence, strengths, and limitations of the literature published about the research questions, identifying key points that remain opened to be addressed, and make suggestions for future research studies. Body representation, as well as pain perception and treatment, can be better understood if an enlarged perspective including body and space perception is considered

    Explicit and implicit own’s body and space perception in painful musculoskeletal disorders and rheumatic diseases: a systematic scoping review

    Get PDF
    Background: Pain and body perception are essentially two subjective mutually influencing experiences. However, in the field of musculoskeletal disorders and rheumatic diseases we lack of a comprehensive knowledge about the relationship between body perception dysfunctions and pain or disability. We systematically mapped the literature published about the topics of: a) somatoperception; b) body ownership; and c) perception of space, analysing the relationship with pain and disability. The results were organized around the two main topics of the assessment and treatment of perceptual dysfunctions. Methods: This scoping review followed the six-stage methodology suggested by Arksey and O’Malley. Ten electronic databases and grey literature were systematically searched. The PRISMA Extension for Scoping Reviews was used for reporting results. Two reviewers with different background, independently performed study screening and selection, and one author performed data extraction, that was checked by a second reviewer. Results: Thirty-seven studies fulfilled the eligibility criteria. The majority of studies (68%) concerned the assessment methodology, and the remaining 32% investigated the effects of therapeutic interventions. Research designs, methodologies adopted, and settings varied considerably across studies. Evidence of distorted body experience were found mainly for explicit somatoperception, especially in studies adopting self-administered questionnaire and subjective measures, highlighting in some cases the presence of sub-groups with different perceptual features. Almost half of the intervention studies (42%) provided therapeutic approaches combining more than one perceptual task, or sensory-motor tasks together with perceptual strategies, thus it was difficult to estimate the relative effectiveness of each single therapeutic component. Conclusions: To our knowledge, this is the first attempt to systematically map and summarize this research area in the field of musculoskeletal disorders and rheumatic diseases. Although methodological limitations limit the validity of the evidence obtained, some strategies of assessment tested and therapeutic strategies proposed represent useful starting points for future research. This review highlights preliminary evidence, strengths, and limitations of the literature published about the research questions, identifying key points that remain opened to be addressed, and make suggestions for future research studies. Body representation, as well as pain perception and treatment, can be better understood if an enlarged perspective including body and space perception is considered
    • …
    corecore