663 research outputs found

    Rapid Change in Articulatory Lip Movement Induced by Preceding Auditory Feedback during Production of Bilabial Plosives

    Get PDF
    BACKGROUND: There has been plentiful evidence of kinesthetically induced rapid compensation for unanticipated perturbation in speech articulatory movements. However, the role of auditory information in stabilizing articulation has been little studied except for the control of voice fundamental frequency, voice amplitude and vowel formant frequencies. Although the influence of auditory information on the articulatory control process is evident in unintended speech errors caused by delayed auditory feedback, the direct and immediate effect of auditory alteration on the movements of articulators has not been clarified. METHODOLOGY/PRINCIPAL FINDINGS: This work examined whether temporal changes in the auditory feedback of bilabial plosives immediately affects the subsequent lip movement. We conducted experiments with an auditory feedback alteration system that enabled us to replace or block speech sounds in real time. Participants were asked to produce the syllable /pa/ repeatedly at a constant rate. During the repetition, normal auditory feedback was interrupted, and one of three pre-recorded syllables /pa/, /Φa/, or /pi/, spoken by the same participant, was presented once at a different timing from the anticipated production onset, while no feedback was presented for subsequent repetitions. Comparisons of the labial distance trajectories under altered and normal feedback conditions indicated that the movement quickened during the short period immediately after the alteration onset, when /pa/ was presented 50 ms before the expected timing. Such change was not significant under other feedback conditions we tested. CONCLUSIONS/SIGNIFICANCE: The earlier articulation rapidly induced by the progressive auditory input suggests that a compensatory mechanism helps to maintain a constant speech rate by detecting errors between the internally predicted and actually provided auditory information associated with self movement. The timing- and context-dependent effects of feedback alteration suggest that the sensory error detection works in a temporally asymmetric window where acoustic features of the syllable to be produced may be coded

    Quality of Graphite Target for Biological/Biomedical/Environmental Applications of 14C-Accelerator Mass Spectrometry

    Get PDF
    Catalytic graphitization for 14C-accelerator mass spectrometry (14C-AMS) produced various forms of elemental carbon. Our high-throughput Zn reduction method (C/Fe = 1:5, 500 °C, 3 h) produced the AMS target of graphite-coated iron powder (GCIP), a mix of nongraphitic carbon and Fe3C. Crystallinity of the AMS targets of GCIP (nongraphitic carbon) was increased to turbostratic carbon by raising the C/Fe ratio from 1:5 to 1:1 and the graphitization temperature from 500 to 585 °C. The AMS target of GCIP containing turbostratic carbon had a large isotopic fractionation and a low AMS ion current. The AMS target of GCIP containing turbostratic carbon also yielded less accurate/precise 14C-AMS measurements because of the lower graphitization yield and lower thermal conductivity that were caused by the higher C/Fe ratio of 1:1. On the other hand, the AMS target of GCIP containing nongraphitic carbon had higher graphitization yield and better thermal conductivity over the AMS target of GCIP containing turbostratic carbon due to optimal surface area provided by the iron powder. Finally, graphitization yield and thermal conductivity were stronger determinants (over graphite crystallinity) for accurate/precise/high-throughput biological, biomedical, and environmental14C-AMS applications such as absorption, distribution, metabolism, elimination (ADME), and physiologically based pharmacokinetics (PBPK) of nutrients, drugs, phytochemicals, and environmental chemicals

    A High-Speed Congenic Strategy Using First-Wave Male Germ Cells

    Get PDF
    BACKGROUND: In laboratory mice and rats, congenic breeding is essential for analyzing the genes of interest on specific genetic backgrounds and for analyzing quantitative trait loci. However, in theory it takes about 3-4 years to achieve a strain carrying about 99% of the recipient genome at the tenth backcrossing (N10). Even with marker-assisted selection, the so-called 'speed congenic strategy', it takes more than a year at N4 or N5. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a new high-speed congenic system using round spermatids retrieved from immature males (22-25 days of age). We applied the technique to three genetically modified strains of mice: transgenic (TG), knockin (KI) and N-ethyl-N-nitrosourea (ENU)-induced mutants. The donor mice had mixed genetic backgrounds of C57BL/6 (B6):DBA/2 or B6:129 strains. At each generation, males used for backcrossing were selected based on polymorphic marker analysis and their round spermatids were injected into B6 strain oocytes. Backcrossing was repeated until N4 or N5. For the TG and ENU-mutant strains, the N5 generation was achieved on days 188 and 190 and the proportion of B6-homozygous loci was 100% (74 markers) and 97.7% (172/176 markers), respectively. For the KI strain, N4 was achieved on day 151, all the 86 markers being B6-homozygous as early as on day 106 at N3. The carrier males at the final generation were all fertile and propagated the modified genes. Thus, three congenic strains were established through rapid generation turnover between 41 and 44 days. CONCLUSIONS/SIGNIFICANCE: This new high-speed breeding strategy enables us to produce congenic strains within about half a year. It should provide the fastest protocol for precise definition of the phenotypic effects of genes of interest on desired genetic backgrounds

    The Adaptor Function of TRAPPC2 in Mammalian TRAPPs Explains TRAPPC2-Associated SEDT and TRAPPC9-Associated Congenital Intellectual Disability

    Get PDF
    Background: The TRAPP (Transport protein particle) complex is a conserved protein complex functioning at various steps in vesicle transport. Although yeast has three functionally and structurally distinct forms, TRAPPI, II and III, emerging evidence suggests that mammalian TRAPP complex may be different. Mutations in the TRAPP complex subunit 2 (TRAPPC2) cause X-linked spondyloepiphyseal dysplasia tarda, while mutations in the TRAPP complex subunit 9 (TRAPPC9) cause postnatal mental retardation with microcephaly. The structural interplay between these subunits found in mammalian equivalent of TRAPPI and those specific to TRAPPII and TRAPPIII remains largely unknown and we undertook the present study to examine the interaction between these subunits. Here, we reveal that the mammalian equivalent of the TRAPPII complex is structurally distinct from the yeast counterpart thus leading to insight into mechanism of disease. Principal Findings: We analyzed how TRAPPII- or TRAPPIII- specific subunits interact with the six-subunit core complex of TRAPP by co-immunoprecipitation in mammalian cells. TRAPPC2 binds to TRAPPII-specific subunit TRAPPC9, which in turn binds to TRAPPC10. Unexpectedly, TRAPPC2 can also bind to the putative TRAPPIII-specific subunit, TRAPPC8. Endogenous TRAPPC9-positive TRAPPII complex does not contain TRAPPC8, suggesting that TRAPPC2 binds to either TRAPPC9 or TRAPPC8 during the formation of the mammalian equivalents of TRAPPII or TRAPPIII, respectively. Therefore, TRAPPC2 serves as an adaptor for the formation of these complexes. A disease-causing mutation of TRAPPC2, D47Y, failed to interact with either TRAPPC9 or TRAPPC8, suggesting that aspartate 47 in TRAPPC2 is at or near the site of interaction with TRAPPC9 or TRAPPC8, mediating the formation of TRAPPII and/or TRAPPIII. Furthermore, disease-causing deletional mutants of TRAPPC9 all failed to interact with TRAPPC2 and TRAPPC10. Conclusions: TRAPPC2 serves as an adaptor for the formation of TRAPPII or TRAPPIII in mammalian cells. The mammalian equivalent of TRAPPII is likely different from the yeast TRAPPII structurally. © 2011 Zong et al.published_or_final_versio

    Molecular Implication of PP2A and Pin1 in the Alzheimer's Disease Specific Hyperphosphorylation of Tau

    Get PDF
    Tau phosphorylation and dephosphorylation regulate in a poorly understood manner its physiological role of microtubule stabilization, and equally its integration in Alzheimer disease (AD) related fibrils. A specific phospho-pattern will result from the balance between kinases and phosphatases. The heterotrimeric Protein Phosphatase type 2A encompassing regulatory subunit PR55/Bα (PP2A(T55α)) is a major Tau phosphatase in vivo, which contributes to its final phosphorylation state. We use NMR spectroscopy to determine the dephosphorylation rates of phospho-Tau by this major brain phosphatase, and present site-specific and kinetic data for the individual sites including the pS202/pT205 AT8 and pT231 AT180 phospho-epitopes.We demonstrate the importance of the PR55/Bα regulatory subunit of PP2A within this enzymatic process, and show that, unexpectedly, phosphorylation at the pT231 AT180 site negatively interferes with the dephosphorylation of the pS202/pT205 AT8 site. This inhibitory effect can be released by the phosphorylation dependent prolyl cis/trans isomerase Pin1. Because the stimulatory effect is lost with the dimeric PP2A core enzyme (PP2A(D)) or with a phospho-Tau T231A mutant, we propose that Pin1 regulates the interaction between the PR55/Bα subunit and the AT180 phospho-epitope on Tau.Our results show that phosphorylation of T231 (AT180) can negatively influence the dephosphorylation of the pS202/pT205 AT8 epitope, even without an altered PP2A pool. Thus, a priming dephosphorylation of pT231 AT180 is required for efficient PP2A(T55α)-mediated dephosphorylation of pS202/pT205 AT8. The sophisticated interplay between priming mechanisms reported for certain Tau kinases and the one described here for Tau phosphatase PP2A(T55α) may contribute to the hyperphosphorylation of Tau observed in AD neurons

    Characterization of the natural variation in Arabidopsis thaliana metabolome by the analysis of metabolic distance

    Get PDF
    Metabolite fingerprinting is widely used to unravel the chemical characteristics of biological samples. Multivariate data analysis and other statistical tools are subsequently used to analyze and visualize the plasticity of the metabolome and/or the relationship between those samples. However, there are limitations to these approaches for example because of the multi-dimensionality of the data that makes interpretation of the data obtained from untargeted analysis almost impossible for an average human being. These limitations make the biological information that is of prime importance in untargeted studies be partially exploited. Even in the case of full exploitation, current methods for relationship elucidation focus mainly on between groups variation and differences. Therefore, a measure that is capable of exploiting both between- and within-group biological variation would be of great value. Here, we examined the natural variation in the metabolome of nine Arabidopsis thaliana accessions grown under various environmental conditions and established a measure for the metabolic distance between accessions and across environments. This data analysis approach shows that there is just a minor correlation between genetic and metabolic diversity of the nine accessions. On the other hand, it delivers so far in Arabidopsis unexplored chemical information and is shown to be biologically relevant for resistance studies

    Search for the decay K_L-> pi^0 nu nubar

    Full text link
    We report on a search for the rare decay K_L -> pi^0 nu nubar in the KTeV experiment at Fermilab. We searched for two-photon events whose kinematics were consistent with an isolated pi^0 coming from the decay K_L -> pi^0 nu nubar. One candidate event was observed, which was consistent with the expected level of background. An upper limit on the branching ratio was determined to be B(K_L -> pi^0 nu nubar) < 1.6E-6 at the 90% confidence level.Comment: Documentstyle aps,psfig,prl, 5 pages, 3 figure

    CHMP1A encodes an essential regulator of BMI1-INK4A in cerebellar development

    Get PDF
    Charged multivesicular body protein 1A (CHMP1A; also known as chromatin-modifying protein 1A) is a member of the ESCRT-III (endosomal sorting complex required for transport-III) complex but is also suggested to localize to the nuclear matrix and regulate chromatin structure. Here, we show that loss-of-function mutations in human CHMP1A cause reduced cerebellar size (pontocerebellar hypoplasia) and reduced cerebral cortical size (microcephaly). CHMP1A-mutant cells show impaired proliferation, with increased expression of INK4A, a negative regulator of stem cell proliferation. Chromatin immunoprecipitation suggests loss of the normal INK4A repression by BMI in these cells. Morpholino-based knockdown of zebrafish chmp1a resulted in brain defects resembling those seen after bmi1a and bmi1b knockdown, which were partially rescued by INK4A ortholog knockdown, further supporting links between CHMP1A and BMI1-mediated regulation of INK4A. Our results suggest that CHMP1A serves as a critical link between cytoplasmic signals and BMI1-mediated chromatin modifications that regulate proliferation of central nervous system progenitor cells
    corecore