1,984 research outputs found

    Social and Economic Impact of Solar Electricity at Schuchuli Village

    Get PDF
    Schuchuli, a small remote village on the Papago Indian Reservation in southwest Arizona, is 27 kilometers (17 miles) from the nearest available utility power. Its lack of conventional power is due to the prohibitive cost of supplying a small electrical load with a long-distance distribution line. Furthermore, alternate energy sources are expensive and place a burden on the resources of the villagers. On December 16, 1978, as part of a federally funded project, a solar cell power system was put into operation at Schuchuli. The system powers the village water pump, lighting for homes and other village buildings, family refrigerators and a communal washing machine and sewing machine

    From the discrete to the continuous - towards a cylindrically consistent dynamics

    Full text link
    Discrete models usually represent approximations to continuum physics. Cylindrical consistency provides a framework in which discretizations mirror exactly the continuum limit. Being a standard tool for the kinematics of loop quantum gravity we propose a coarse graining procedure that aims at constructing a cylindrically consistent dynamics in the form of transition amplitudes and Hamilton's principal functions. The coarse graining procedure, which is motivated by tensor network renormalization methods, provides a systematic approximation scheme towards this end. A crucial role in this coarse graining scheme is played by embedding maps that allow the interpretation of discrete boundary data as continuum configurations. These embedding maps should be selected according to the dynamics of the system, as a choice of embedding maps will determine a truncation of the renormalization flow.Comment: 22 page

    Extrapolation of Multiplicity distribution in p+p(\bar(p)) collisions to LHC energies

    Full text link
    The multiplicity (N_ch) and pseudorapidity distribution (dN_ch/d\eta) of primary charged particles in p+p collisions at Large Hadron Collider (LHC) energies of \sqrt(s) = 10 and 14 TeV are obtained from extrapolation of existing measurements at lower \sqrt(s). These distributions are then compared to calculations from PYTHIA and PHOJET models. The existing \sqrt(s) measurements are unable to distinguish between a logarithmic and power law dependence of the average charged particle multiplicity () on \sqrt(s), and their extrapolation to energies accessible at LHC give very different values. Assuming a reasonably good description of inclusive charged particle multiplicity distributions by Negative Binomial Distributions (NBD) at lower \sqrt(s) to hold for LHC energies, we observe that the logarithmic \sqrt(s) dependence of are favored by the models at midrapidity. The dN_ch/d\eta versus \eta for the existing measurements are found to be reasonably well described by a function with three parameters which accounts for the basic features of the distribution, height at midrapidity, central rapidity plateau and the higher rapidity fall-off. Extrapolation of these parameters as a function of \sqrt(s) is used to predict the pseudorapidity distributions of charged particles at LHC energies. dN_ch/d\eta calculations from PYTHIA and PHOJET models are found to be lower compared to those obtained from the extrapolated dN_ch/d\eta versus \eta distributions for a broad \eta range.Comment: 11 pages and 13 figures. Substantially revised and accepted for publication in Journal of Physics

    Adaptive Covariance Estimation with model selection

    Get PDF
    We provide in this paper a fully adaptive penalized procedure to select a covariance among a collection of models observing i.i.d replications of the process at fixed observation points. For this we generalize previous results of Bigot and al. and propose to use a data driven penalty to obtain an oracle inequality for the estimator. We prove that this method is an extension to the matricial regression model of the work by Baraud

    Radiotherapy optimAl Design: An Academic Radiotherapy Treatment Design System

    Get PDF
    Optimally designing radiotherapy and radiosurgery treatments to increase the likelihood of a successful recovery from cancer is an important application of operations research. Researchers have been hindered by the lack of academic software that supports head-to-head comparisons of different techniques, and this article addresses the inherent difficulties of designing and implementing an academic treatment planning system. In particular, this article details the algorithms and the software design of Radiotherapy optimAl Design (RAD)

    Slow breathing reduces sympathoexcitation in COPD

    Get PDF
    Neurohumoral activation has been shown to be present in hypoxic patients with chronic obstructive pulmonary disease (COPD). The aims of the present study were to investigate whether there is sympathetic activation in COPD patients in the absence of hypoxia and whether slow breathing has an impact on sympathoexcitation and baroreflex sensitivity. Efferent muscle sympathetic nerve activity, blood pressure, cardiac frequency and respiratory movements were continuously measured in 15 COPD patients and 15 healthy control subjects. Baroreflex sensitivity was analysed by autoregressive spectral analysis and the alpha-angle method. At baseline, sympathetic nerve activity was significantly elevated in COPD patients and baroreflex sensitivity was decreased (5.0+/-0.6 versus 8.9+/-0.8 ms.mmHg(-1)). Breathing at a rate of 6 breaths.min(-1) caused sympathetic activity to drop significantly in COPD patients (from 61.3+/-4.6 to 53.0+/-4.3 bursts per 100 heartbeats) but not in control subjects (39.2+/-3.2 versus 37.5+/-3.3 bursts per 100 heartbeats). In both groups, slow breathing significantly enhanced baroreflex sensitivity. In conclusion, sympathovagal imbalance is present in normoxic chronic obstructive pulmonary disease patients. The possibility of modifying these changes by slow breathing may help to better understand and influence this systemic disease

    Resummation of transverse energy in vector boson and Higgs boson production at hadron colliders

    Full text link
    We compute the resummed hadronic transverse energy (E_T) distribution due to initial-state QCD radiation in vector boson and Higgs boson production at hadron colliders. The resummed exponent, parton distributions and coefficient functions are treated consistently to next-to-leading order. The results are matched to fixed-order calculations at large E_T and compared with parton-shower Monte Carlo predictions at Tevatron and LHC energies.Comment: 24 pages, 15 figure

    Towards classical geometrodynamics from Group Field Theory hydrodynamics

    Full text link
    We take the first steps towards identifying the hydrodynamics of group field theories (GFTs) and relating this hydrodynamic regime to classical geometrodynamics of continuum space. We apply to GFT mean field theory techniques borrowed from the theory of Bose condensates, alongside standard GFT and spin foam techniques. The mean field configuration we study is, in turn, obtained from loop quantum gravity coherent states. We work in the context of 2d and 3d GFT models, in euclidean signature, both ordinary and colored, as examples of a procedure that has a more general validity. We also extract the effective dynamics of the system around the mean field configurations, and discuss the role of GFT symmetries in going from microscopic to effective dynamics. In the process, we obtain additional insights on the GFT formalism itself.Comment: revtex4, 32 pages. Contribution submitted to the focus issue of the New Journal of Physics on "Classical and Quantum Analogues for Gravitational Phenomena and Related Effects", R. Schuetzhold, U. Leonhardt and C. Maia, Eds; v2: typos corrected, references updated, to match the published versio

    Effects of hydrodynamics on soot formation in laminar opposed-jet diffusion flames

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77077/1/AIAA-24090-731.pd
    • …
    corecore