31 research outputs found

    The Glassy Potts Model

    Full text link
    We introduce a Potts model with quenched, frustrated disorder, that enjoys of a gauge symmetry that forbids spontaneous magnetization, and allows the glassy phase to extend from TcT_c down to T=0. We study numerical the 4 dimensional model with q=4q=4 states. We show the existence of a glassy phase, and we characterize it by studying the probability distributions of an order parameter, the binder cumulant and the divergence of the overlap susceptibility. We show that the dynamical behavior of the system is characterized by aging.Comment: 4 pages including 4 (color) ps figures (all on page 4

    Finite-size scaling at the dynamical transition of the mean-field 10-state Potts glass

    Full text link
    We use Monte Carlo simulations to study the static and dynamical properties of a Potts glass with infinite range Gaussian distributed exchange interactions for a broad range of temperature and system size up to N=2560 spins. The results are compatible with a critical divergence of the relaxation time tau at the theoretically predicted dynamical transition temperature T_D, tau \propto (T-T_D)^{-\Delta} with Delta \approx 2. For finite N a further power law at T=T_D is found, tau(T=T_D) \propto N^{z^\star} with z^\star \approx 1.5 and for T>T_D dynamical finite-size scaling seems to hold. The order parameter distribution P(q) is qualitatively compatible with the scenario of a first order glass transition as predicted from one-step replica symmetry breaking schemes.Comment: 8 pages of Latex, 4 figure

    Speckle fluctuations resolve the interdistance between incoherent point sources in complex media

    Get PDF
    We study the fluctuations of the light emitted by two identical incoherent point sources in a disordered environment. The intensity-intensity correlation function and the speckle contrast, obtained after proper temporal and configurational averaging, encode the relative distance between the two sources. This suggests the intriguing possibility that intensity measurements at only one point in a speckle pattern produced by two incoherent sources can provide information about the relative distance between the sources, with a precision that is not limited by diffraction. The theory also suggests an alternative approach to the Green's-function retrieval technique, where the correlations of the isotropic ambient noise detected by two receivers are replaced by a measurement at a single point of the noise due to two fluctuating incoherent sources

    Evidence against a glass transition in the 10-state short range Potts glass

    Full text link
    We present the results of Monte Carlo simulations of two different 10-state Potts glasses with random nearest neighbor interactions on a simple cubic lattice. In the first model the interactions come from a \pm J distribution and in the second model from a Gaussian one, and in both cases the first two moments of the distribution are chosen to be equal to J_0=-1 and Delta J=1. At low temperatures the spin autocorrelation function for the \pm J model relaxes in several steps whereas the one for the Gaussian model shows only one. In both systems the relaxation time increases like an Arrhenius law. Unlike the infinite range model, there are only very weak finite size effects and there is no evidence that a dynamical or a static transition exists at a finite temperature.Comment: 9 pages of Latex, 4 figure

    Continuous RSB mean-field solution of the Potts glass

    Full text link
    We investigate the p-state mean-field model of the Potts glass (2≤p≤42\le p \le 4) below the continuous phase transition to a glassy phase. We find that apart from a solution with a first hierarchical level of replica-symmetry breaking (1RSB), locally stable close to the transition point, there is a continuous full replica-symmetry breaking (FRSB) solution. The latter is marginally stable and has a higher free energy than the former. We argue that the true equilibrium is reached only by FRSB, being globally thermodynamically homogeneous, whereas 1RSB is only locally homogeneous.Comment: REVTeX4.1, 4 pages, 1 figur

    A two-parameter random walk with approximate exponential probability distribution

    Full text link
    We study a non-Markovian random walk in dimension 1. It depends on two parameters eps_r and eps_l, the probabilities to go straight on when walking to the right, respectively to the left. The position x of the walk after n steps and the number of reversals of direction k are used to estimate eps_r and eps_l. We calculate the joint probability distribution p_n(x,k) in closed form and show that, approximately, it belongs to the exponential family.Comment: 12 pages, updated reference to companion paper cond-mat/060126

    One-step replica symmetry breaking solution of the quadrupolar glass model

    Full text link
    We consider the quadrupolar glass model with infinite-range random interaction. Introducing a simple one-step replica symmetry breaking ansatz we investigate the para-glass continuous (discontinuous) transition which occurs below (above) a critical value of the quadrupole dimension m*. By using a mean-field approximation we study the stability of the one-step replica symmetry breaking solution and show that for m>m* there are two transitions. The thermodynamic transition is discontinuous but there is no latent heat. At a higher temperature we find the dynamical or glass transition temperature and the corresponding discontinuous jump of the order parameter.Comment: 10 pages, 3 figure

    Dynamical approach to chains of scatterers

    Full text link
    Linear chains of quantum scatterers are studied in the process of lengthening, which is treated and analysed as a discrete dynamical system defined over the manifold of scattering matrices. Elementary properties of such dynamics relate the transport through the chain to the spectral properties of individual scatterers. For a single-scattering channel case some new light is shed on known transport properties of disordered and noisy chains, whereas translationally invariant case can be studied analytically in terms of a simple deterministic dynamical map. The many-channel case was studied numerically by examining the statistical properties of scatterers that correspond to a certain type of transport of the chain i.e. ballistic or (partially) localised.Comment: 16 pages, 7 figure

    The Effect of Resonances on Diffusive Scattering

    Full text link
    The presence of resonances modifies the passage of light or of electrons through a disordered medium. We generalize random matrix theory to account for this effect. Using supersymmetry, we calculate analytically the mean density of states, and the effective Lagrangean of the generating functional for the two-point function. We show that the diffusion constant scales with the effective mean level spacing. The latter exhibits a resonance dip. These facts allow us to interpret experimental results on light scattering for different concentrations of resonant scatterers.Comment: 12 pages, 1 Figure, to be published in Physical Review

    Classical and Quantum Behavior in Mean-Field Glassy Systems

    Full text link
    In this talk I review some recent developments which shed light on the main connections between structural glasses and mean-field spin glass models with a discontinuous transition. I also discuss the role of quantum fluctuations on the dynamical instability found in mean-field spin glasses with a discontinuous transition. In mean-field models with pairwise interactions in a transverse field it is shown, in the framework of the static approximation, that such instability is suppressed at zero temperature.Comment: 9 Pages (including 5 Figures), Revtex, Proceedings of the XIV Sitges Conference, June 1996 (Barcelona) Spai
    corecore