640 research outputs found
A Low-Cost Monitoring Platform and Visual Interface to Analyse Thermal Comfort in Smart Building Applications Using a Citizen–Scientist Strategy
Smart building issues are critical for current energy and comfort managing aspects in built environments. Nevertheless, the diffusion of smart monitoring solutions via user-friendly graphical interfaces is still an ongoing issue subject to the need to diffuse a smart building culture and a low-cost series of solutions. This paper proposes a new low-cost IoT sensor network, exploiting Raspberry Pi and Arduino platforms, for collecting real-time data and evaluating specific thermal comfort indicators (PMV and PPD). The overall architecture was accordingly designed, including the hardware setup, the back-end and the Android user interface. Eventually, three distinct prototyping platforms were deployed for initial testing of the general system, and we analysed the obtained results for different building typologies and seasonal periods, based on collected data and users’ preferences. This work is part of a large educational and citizen science activity
Reduced lysosomal acid lipase activity: A new marker of liver disease severity across the clinical continuum of non-alcoholic fatty liver disease?
Lysosomal acid lipase (LAL) plays a key role in intracellular lipid metabolism. Reduced LAL activity promotes increased multi-organ lysosomal cholesterol ester storage, as observed in two recessive autosomal genetic diseases, Wolman disease and Cholesterol ester storage disease. Severe liver steatosis and accelerated liver fibrosis are common features in patients with genetic LAL deficiency. By contrast, few reliable data are available on the modulation of LAL activity in vivo and on the epigenetic and metabolic factors capable of regulating its activity in subjects without homozygous mutations of the Lipase A gene. In the last few years, a less severe and non-genetic reduction of LAL activity was reported in children and adults with non-alcoholic fatty liver disease (NAFLD), suggesting a possible role of LAL reduction in the pathogenesis and progression of the disease. Patients with NAFLD show a significant, progressive reduction of LAL activity from simple steatosis to non-alcoholic steatohepatitis and cryptogenic cirrhosis. Among cirrhosis of different etiologies, those with cryptogenic cirrhosis show the most significant reductions of LAL activity. These findings suggest that the modulation of LAL activity may become a possible new therapeutic target for patients with more advanced forms of NAFLD. Moreover, the measurement of LAL activity may represent a possible new marker of disease severity in this clinical setting
Prosystemin overexpression induces transcriptional modifications of defense-related and receptor-like kinase genes and reduces the susceptibility to Cucumber mosaic virus and its satellite RNAs in transgenic tomato plants
Open Access JournalSystemin is a plant signal peptide hormone involved in the responses to wounding and insect damage in the Solanaceae family. It works in the same signaling pathway of jasmonic acid (JA) and enhances the expression of proteinase inhibitors. With the aim of studying a role for systemin in plant antiviral responses, a tomato (Solanum lycopersicum) transgenic line overexpressing the prosystemin cDNA, i.e. the systemin precursor, was inoculated with Cucumber mosaic virus (CMV) strain Fny supporting either a necrogenic or a non-necrogenic satellite RNA (satRNA) variant. Transgenic plants showed reduced susceptibility to both CMV/satRNA combinations. While symptoms of the non-necrogenic inoculum were completely suppressed, a delayed onset of lethal disease occurred in about half of plants challenged with the necrogenic inoculum. RT-qPCR analysis showed a correlation between the systemin-mediated reduced susceptibility and the JA biosynthetic and signaling pathways (e.g. transcriptional alteration of lipoxygenase D and proteinase inhibitor II). Moreover, transgenically overexpressed systemin modulated the expression of a selected set of receptor-like protein kinase (RLK) genes, including some playing a known role in plant innate immunity. A significant correlation was found between the expression profiles of some RLKs and the systemin-mediated reduced susceptibility to CMV/satRNA. These results show that systemin can increase plant defenses against CMV/satRNA through transcriptional reprogramming of diverse signaling pathways
After Treatment Decrease of Bone Marrow Tregs and Outcome in Younger Patients with Newly Diagnosed Acute Myeloid Leukemia
An emerging body of evidence demonstrates that defects in antileukemic effector cells in patients with acute myeloid leukemia (AML) can contribute to the development and/or persistence of the disease. In particular, immune suppressive regulatory T cells (Tregs) may contribute to this defective antileukemic immune response, being recruited by bone marrow leukemic cells to evade immune surveillance. We evaluated Tregs (CD4+/CD45RA-/CD25high/CD127low), performing multiparametric flow cytometry on freshly collected bone marrow aspirate (BMA), in addition to the usual molecular and cytogenetic work-up in newly diagnosed AML patients to look for any correlation between Tregs and the overall response rate (ORR). We studied 39 AML younger patients (<65 years), all treated with standard induction chemotherapy. ORR (complete remission (CR)+CR with incomplete hematologic recovery (CRi)) was documented in 21 out of 39 patients (54%); two partial responder patients were also recorded. Apart from the expected impact of the molecular-cytogenetic group (p=0.03) and the NPM mutation (p=0.05), diagnostic BMA Tregs did not show any correlation with ORR. However, although BMA Tregs did not differ in the study population after treatment, their counts significantly decreased in responder patients (p=0.039), while no difference was documented in nonresponder ones. This suggested that the removal of Treg cells is able to evoke and enhance anti-AML immune response. However, the role of BMA Tregs in mediating immune system-AML interactions in the diagnostic and posttreatment phase should be confirmed in a greater number of patients
Therapeutic Strategies Targeting Urokinase and Its Receptor in Cancer
Several studies have ascertained that uPA and uPAR do participate in tumor progression and metastasis and are involved in cell adhesion, migration, invasion and survival, as well as angiogenesis. Increased levels of uPA and uPAR in tumor tissues, stroma and biological fluids correlate with adverse clinic–pathologic features and poor patient outcomes. After binding to uPAR, uPA activates plasminogen to plasmin, a broad-spectrum matrix-and fibrin-degrading enzyme able to facilitate tumor cell invasion and dissemination to distant sites. Moreover, uPAR activated by uPA regulates most cancer cell activities by interacting with a broad range of cell membrane receptors. These findings make uPA and uPAR not only promising diagnostic and prognostic markers but also attractive targets for developing anticancer therapies. In this review, we debate the uPA/uPAR structure–function relationship as well as give an update on the molecules that interfere with or inhibit uPA/uPAR functions. Additionally, the possible clinical development of these compounds is discussed
Characterization of the THz quasi-optical channel for the measurement of the power radiated by photoconductive antennas
In this paper a rigorous electromagnetic characterization of the setup for measuring the THz power radiated by pulsed photoconductive antenna is discussed. Such characterization is expressed in terms of efficiencies which quantify how much power is lost in the coupling between the various components involved in the measurement setup. The conducted analysis highlights how such efficiencies affect the energy spectrum of the measured pulsed signal. Measurement results with two different detectors will be shown during the conference and will be compared against the power estimation obtained by a recently developed equivalent circuit model for photoconductive antennas. The proposed electromagnetic modeling allows us to effectively improve the design of THz time domain systems
Revealing the coral habitat effect on benthopelagic fauna diversity in the Santa Maria di Leuca cold-water coral province using different devices and Bayesian hierarchical modelling
Data from two experimental longline surveys and two video inspections carried out in Santa Maria di Leuca cold-water coral province (Mediterranean Sea) during spring-autumn 2010 were used in order to compare the benthopelagic abundance and diversity between coral and non-coral habitats and between different devices. The sampling was carried out in two types of habitat: a coral habitat with carbonate mounds and a non-coral habitat characterized by intermound sea floor. A Bayesian hierarchical modelling approach to accommodate factors influencing community assemblages was used considering the number of species, the Shannon-Wiener diversity index and the two most abundant species represented by the European conger (Conger conger) and blackbelly rosefish (Helicolenus dactylopterus). A relevant effect of the habitat factor was observed for both the number of species and the diversity index, showing a higher species number and diversity index in the coral habitat than in the non-coral habitat. Concerning the relevance of fixed effects from the model on the probability of observing non-zero (positive) abundances, the devices considered, longline and baited lander, did not show different influence for either C. conger or H. dactylopterus. In the case of positive abundance, a relevant device effect was only observed for H. dactylopterus, showing higher abundances for longline than for baited lander. A habitat effect was detected, with positive abundances for both species in the coral habitat. This study proves that structurally complex habitats generated by cold-water corals influence the distribution and diversity of the benthopelagic fauna, and that the use of different devices can provide complementary useful results. Increased knowledge about the role of cold-water corals in the associated benthopelagic fauna could lead to better conservation of one of the most important hot spots of biodiversity in the Mediterranean Sea
Monitoring of a coastal zone by independent fast photogrammetric surveys: The case of Monterosso a Mare (Ligurian Sea, Italy)
The Structure-from-Motion photogrammetry (SfM) allows a fast and easy data acquisition and a highly automated data processing, leading to accurate photorealistic point clouds. The results of a SfM-based modeling of the coastal zone of Monterosso a Mare (Eastern Liguria, Italy) are shown here. Four photogrammetric surveys of the area were carried out from both moving surface (boat) and aerial (Unmanned Aerial Vehicle) platforms. The corresponding results were compared in order to provide information about precision and model reliability from fast ad cheap SfM surveys carried out without Ground Control Points (GCPs). The important issue of scale factor evaluation was solved by means of selection of points easily recognizable in each point cloud and measurement of the length of the polyline that connects these points. The ratio between the lengths of the polyline defined on a point cloud and the corresponding polyline defined in a metric reference frame provided the scale factor. The results highlight that the SfM technique can be used in emergency conditions, where GCPs cannot be used, and is compatible with a floating platform-based observation, leading to point clouds whose resolution is some centimeters for an acquisition distance of 100-150 m.Published73-817A. Geofisica per il monitoraggio ambientaleN/A or not JC
Ochratoxin A affects oocyte maturation and subsequent embryo developmental dynamics in the juvenile sheep model
The genotoxic and nephrotoxic mycotoxin Ochratoxin A (OTA) has also been reported to have adverse effects on oocyte maturation and embryo development. Previous studies on the effects of OTA on female fertility have used micromolar concentrations, but no information is available to date on effects in a more relevant nanomolar range. This study used a juvenile sheep model to evaluate the effects of oocyte exposure to low levels of OTA on maturation, fertilization, and embryo development. Further, it was investigated whether different mechanisms of action of OTA could be responsible for varying toxic effects at different levels of exposure. Cumulus-oocyte-complexes (COCs) were exposed to 10 μmol/L–0.1 nmol/L OTA during in vitro maturation and evaluated for cumulus viability, oocyte maturation, and bioenergetic/oxidative status. COCs were subjected to in vitro fertilization, embryo culture, and embryo quality assessment via morphology, viability, bioenergetic/oxidative status, and time-lapse monitoring. At micromolar concentrations, OTA induced cytotoxic effects, by reducing cumulus expansion and oocyte maturation. OTA altered temporospatial dynamics of zygote pronuclear formation and embryo morphokinetics. Blastocysts, even morphologically normal, were found to undergo collapse events, which were probably related to boosted blastocyst mitochondrial activity. At nanomolar concentrations, OTA did not affect COC morpho-functional parameters, but impaired oocyte ability to prevent polyspermy and increased blastocyst apoptosis. In conclusion, in the female germ cell, cytotoxic nonspecific effects characterize OTA-induced toxicity at high exposure levels, whereas fine tuning-mode effects, not associated with altered cell viability and integrity, characterize OTA toxic action at low levels
- …