398 research outputs found

    The Flow Induced by the Coalescence of Two Initially Stationary Drops

    Get PDF
    The coalescence of two initially stationary drops of different size is investigated by solving the unsteady, axisymmetric Navier-Stokes equations numerically, using a Front-Tracking/Finite Difference method. Initially, the drops are put next to each other and the film between them ruptured. Due to surface tension forces, the drops coalesce rapidly and the fluid from the small drop is injected into the larger one. For low nondimensional viscosity, or Ohnesorge number, little mixing takes place and the small drop fluid forms a blob near the point where the drops touched initially. For low Ohnesorge number, on the other hand, the small drop forms a jet that penetrates far into the large drop. The penetration depth also depends on the size of the drops and shows that for a given fluid of sufficiently low viscosity, there is a maximum penetration depth for intermediate size ratios

    An experimental and computational study of bouncing and deformation in droplet collision

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76090/1/AIAA-1997-129-419.pd

    Numerical simulations of drop collisions

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76145/1/AIAA-1994-835-900.pd

    Head‐on collision of drops—A numerical investigation

    Full text link
    The head‐on collision of equal sized drops is studied by full numerical simulations. The Navier–Stokes equations are solved for the fluid motion both inside and outside the drops using a front tracking/finite difference technique. The drops are accelerated toward each other by a body force that is turned off before the drops collide. When the drops collide, the fluid between them is pushed outward leaving a thin layer bounded by the drop surface. This layer gets progressively thinner as the drops continue to deform, and in several of our calculations we artificially remove this double layer at prescribed times, thus modeling rupture. If no rupture takes place, the drops always rebound, but if the film is ruptured the drops may coalesce permanently or coalesce temporarily and then split again. Although the numerically predicted boundaries between permanent and temporary coalescence are found to be consistent with experimental observations, the exact location of these boundaries in parameter space is found to depend on the time of rupture. © 1996 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71337/2/PHFLE6-8-1-29-1.pd

    Head-on collision of drops: A numerical investigation

    Get PDF
    The head-on collision of equal sized drops is studied by full numerical simulations. The Navier-Stokes equations are solved for fluid motion both inside and outside the drops using a front tracking/finite difference technique. The drops are accelerated toward each other by a body force that is turned off before the drops collide. When the drops collide, the fluid between them is pushed outward leaving a thin later bounded by the drop surface. This layer gets progressively thinner as the drops continue to deform and in several of the calculations this double layer is artificially removed once it is thin enough, thus modeling rupture. If no rupture takes place, the drops always rebound, but if the film is ruptured the drops may coalesce permanently or coalesce temporarily and then split again

    A phase-field model of Hele-Shaw flows in the high viscosity contrast regime

    Get PDF
    A one-sided phase-field model is proposed to study the dynamics of unstable interfaces of Hele-Shaw flows in the high viscosity contrast regime. The corresponding macroscopic equations are obtained by means of an asymptotic expansion from the phase-field model. Numerical integrations of the phase-field model in a rectangular Hele-Shaw cell reproduce finger competition with the final evolution to a steady state finger the width of which goes to one half of the channel width as the velocity increases

    Effects of small surface tension in Hele-Shaw multifinger dynamics: an analytical and numerical study

    Get PDF
    We study the singular effects of vanishingly small surface tension on the dynamics of finger competition in the Saffman-Taylor problem, using the asymptotic techniques described in [S. Tanveer, Phil. Trans. R. Soc. Lond. A 343, 155 (1993)]and [M. Siegel, and S. Tanveer, Phys. Rev. Lett. 76, 419 (1996)] as well as direct numerical computation, following the numerical scheme of [T. Hou, J. Lowengrub, and M. Shelley,J. Comp. Phys. 114, 312 (1994)]. We demonstrate the dramatic effects of small surface tension on the late time evolution of two-finger configurations with respect to exact (non-singular) zero surface tension solutions. The effect is present even when the relevant zero surface tension solution has asymptotic behavior consistent with selection theory.Such singular effects therefore cannot be traced back to steady state selection theory, and imply a drastic global change in the structure of phase-space flow. They can be interpreted in the framework of a recently introduced dynamical solvability scenario according to which surface tension unfolds the structually unstable flow, restoring the hyperbolicity of multifinger fixed points.Comment: 16 pages, 15 figures, submitted to Phys. Rev
    corecore