49 research outputs found

    Culture change in elite sport performance teams: Examining and advancing effectiveness in the new era

    Get PDF
    Reflecting the importance of optimizing culture for elite teams, Fletcher and Arnold (2011) recently suggested the need for expertise in culture change. Acknowledging the dearth of literature on the specific process, however, the potential effectiveness of practitioners in this area is unknown. The present paper examines the activity's precise demands and the validity of understanding in sport psychology and organizational research to support its delivery. Recognizing that sport psychologists are being increasingly utilized by elite team management, initial evidence-based guidelines are presented. Finally, to stimulate the development of ecologically valid, practically meaningful knowledge, the paper identifies a number of future research directions

    Genomic and ecogenomic characterisation of Proteus mirabilis bacteriophage

    Get PDF
    Proteus mirabilis often complicates the care of catheterized patients through the formation of crystalline biofilms which block urine flow. Bacteriophage therapy has been highlighted as a promising approach to control this problem, but relatively few phages infecting P. mirabilis have been characterized. Here we characterize five phages capable of infecting P. mirabilis, including those shown to reduce biofilm formation, and provide insights regarding the wider ecological and evolutionary relationships of these phages. Transmission electron microscopy (TEM) imaging of phages vB_PmiP_RS1pmA, vB_PmiP_RS1pmB, vB_PmiP_RS3pmA, and vB_PmiP_RS8pmA showed that all share morphologies characteristic of the Podoviridae family. The genome sequences of vB_PmiP_RS1pmA, vB_PmiP_RS1pmB, and vB_PmiP_RS3pmA showed these are species of the same phage differing only by point mutations, and are closely related to vB_PmiP_RS8pmA. Podophages characterized in this study were also found to share similarity in genome architecture and composition to other previously described P. mirabilis podophages (PM16 and PM75). In contrast, vB_PimP_RS51pmB showed morphology characteristic of the Myoviridae family, with no notable similarity to other phage genomes examined. Ecogenomic profiling of all phages revealed no association with human urinary tract viromes, but sequences similar to vB_PimP_RS51pmB were found within human gut, and human oral microbiomes. Investigation of wider host-phage evolutionary relationships through tetranucleotide profiling of phage genomes and bacterial chromosomes, indicated vB_PimP_RS51pmB has a relatively recent association with Morganella morganii and other non-Proteus members of the Morganellaceae family. Subsequent host range assays confirmed vB_PimP_RS51pmB can infect M. morganii

    A Novel Catalyst Ag/MgO-CeO2-Al2O3 for the Low-temperature Ethanol- SCR of NO Under Lean de-NOx Conditions

    No full text
    The present work reports data on a novel catalyst having excellent activity, selectivity and stability for the selective reduction of nitric oxide to nitrogen in the presence of ethanol or ethanol/hydrogen mixture as reducing agent, in the low temperature range of 150-300°C and in the presence of excess oxygen, H2O and SO2 in the feed. The novelty of the present catalyst compared to other patented ones, for the reaction at hand, lies upon the simplicity and the remarkably low Ag loading (wt%) used, characteristics that are required for a practical application. In addition, the latter catalyst shows significant activity (rate of NO reduction) at much lower temperatures (below 300°C) compared to other already patented catalysts. The present inventive catalyst consists of silver crystals that are in contact with a mixed oxide support comprised of MgO, CeO2 and Al2O3 in 1:1:2 wt% ratio. This novel catalyst presents high activity in terms of NO conversion (XNO = 60-90%) and high selectivities towards N2 (SN2 = 92-95%) and CO2 (SCO2 > 97%) in the range of 150-400°C, at a GHSV of 40,000 h-1 and using a feed stream of 0.05vol% NO, 0.1vol% EtOH, 5vol% O2 and 5vol% H2O. To our knowledge, this is the highest selectivity towards N2 and CO2 ever reported. In addition, the current catalyst shows remarkable stability with time on stream and in the presence of 5 vol% H2O and 50 ppm SO2 in the feed stream. After 48 h on stream the patented catalyst retains its stability expressed in high activity (XNO > 80%) and selectivities to N2 (SN2 > 95%) and CO2 (SCO2 > 97%)
    corecore