476 research outputs found

    Structural precursor to freezing: An integral equation study

    Full text link
    Recent simulation studies have drawn attention to the shoulder which forms in the second peak of the radial distribution function of hard-spheres at densities close to freezing and which is associated with local crystalline ordering in the dense fluid. We address this structural precursor to freezing using an inhomogeneous integral equation theory capable of describing local packing constraints to a high level of accuracy. The addition of a short-range attractive interaction leads to a well known broadening of the fluid-solid coexistence region as a function of attraction strength. The appearence of a shoulder in our calculated radial distribution functions is found to be consistent with the broadened coexistence region for a simple model potential, thus demonstrating that the shoulder is not exclusively a high density packing effect

    Glass Rheology: From mode-coupling theory to a dynamical yield criterion

    Full text link
    The mode coupling theory (MCT) of glasses, while offering an incomplete description of glass transition physics, represents the only established route to first-principles prediction of rheological behavior in nonergodic materials such as colloidal glasses. However, the constitutive equations derivable from MCT are somewhat intractable, hindering their practical use and also their interpretation. Here, we present a schematic (single-mode) MCT model which incorporates the tensorial structure of the full theory. Using it, we calculate the dynamic yield surface for a large class of flows

    Accurate description of bulk and interfacial properties in colloid-polymer mixtures

    Full text link
    Large-scale Monte Carlo simulations of a phase-separating colloid-polymer mixture are performed and compared to recent experiments. The approach is based on effective interaction potentials in which the central monomers of self-avoiding polymer chains are used as effective coordinates. By incorporating polymer nonideality together with soft colloid-polymer repulsion, the predicted binodal is in excellent agreement with recent experiments. In addition, the interfacial tension as well as the capillary length are in quantitative agreement with experimental results obtained at a number of points in the phase-coexistence region, without the use of any fit parametersComment: 4 pages, 4 figure

    Controlling colloidal sedimentation using time dependent shear

    Get PDF
    Employing a recently developed dynamical density functional theory we study the response of a colloidal sediment above a wall to shear, demonstrating the time dependent changes of the density distribution and its center-of-mass after switching shear either on or off and under oscillatory shear. Following the onset of steady shear we identify two dynamical mechanisms, distinguished by their timescales. Shortly after the onset, a transient enhancement of the packing structure at the wall reflects the self-organization into lanes. On a much longer timescale these effects are transmitted to the bulk, leading to migration away from the wall and an increase in the center-of-mass. Under oscillatory shear flow the center-of-mass enters a stationary state, reminiscent of a driven damped oscillator.Comment: 6 pages, 4 figure

    Dense colloidal suspensions under time-dependent shear

    Full text link
    We consider the nonlinear rheology of dense colloidal suspensions under a time-dependent simple shear flow. Starting from the Smoluchowski equation for interacting Brownian particles advected by shearing (ignoring fluctuations in fluid velocity) we develop a formalism which enables the calculation of time-dependent, far-from-equilibrium averages. Taking shear-stress as an example we derive exactly a generalized Green-Kubo relation, and an equation of motion for the transient density correlator, involving a three-time memory function. Mode coupling approximations give a closed constitutive equation yielding the time-dependent stress for arbitrary shear rate history. We solve this equation numerically for the special case of a hard sphere glass subject to step-strain.Comment: 4 page

    Residual Stresses in Glasses

    Get PDF
    The history dependence of the glasses formed from flow-melted steady states by a sudden cessation of the shear rate γ˙\dot\gamma is studied in colloidal suspensions, by molecular dynamics simulations, and mode-coupling theory. In an ideal glass, stresses relax only partially, leaving behind a finite persistent residual stress. For intermediate times, relaxation curves scale as a function of γ˙t\dot\gamma t, even though no flow is present. The macroscopic stress evolution is connected to a length scale of residual liquefaction displayed by microscopic mean-squared displacements. The theory describes this history dependence of glasses sharing the same thermodynamic state variables, but differing static properties.Comment: submitted to Physical Revie

    Capillary Condensation and Interface Structure of a Model Colloid-Polymer Mixture in a Porous Medium

    Full text link
    We consider the Asakura-Oosawa model of hard sphere colloids and ideal polymers in contact with a porous matrix modeled by immobilized configurations of hard spheres. For this ternary mixture a fundamental measure density functional theory is employed, where the matrix particles are quenched and the colloids and polymers are annealed, i.e. allowed to equilibrate. We study capillary condensation of the mixture in a tiny sample of matrix as well as demixing and the fluid-fluid interface inside a bulk matrix. Density profiles normal to the interface and surface tensions are calculated and compared to the case without matrix. Two kinds of matrices are considered: (i) colloid-sized matrix particles at low packing fractions and (ii) large matrix particles at high packing fractions. These two cases show fundamentally different behavior and should both be experimentally realizable. Furthermore, we argue that capillary condensation of a colloidal suspension could be experimentally accessible. We find that in case (ii), even at high packing fractions, the main effect of the matrix is to exclude volume and, to high accuracy, the results can be mapped onto those of the same system without matrix via a simple rescaling.Comment: 12 pages, 9 figures, submitted to PR

    A First-Principles Constitutive Equation for Suspension Rheology

    Full text link
    Using mode-coupling theory, we derive a constitutive equation for the nonlinear rheology of dense colloidal suspensions under arbitrary time-dependent homogeneous flow. Generalizing previous results for simple shear, this allows the full tensorial structure of the theory to be identified. Macroscopic deformation measures, such as the Cauchy-Green tensors, thereby emerge. So does a direct relation between the stress and the distorted microstructure, illuminating the interplay of slow structural relaxation and arbitrary imposed flow. We present flow curves for steady planar and uniaxial elongation and compare these to simple shear. The resulting non-linear Trouton ratios point to a tensorially nontrivial dynamic yield condition for colloidal glasses.Comment: accepted to Phys.Rev.Let

    Dynamic Glass Transition in Two Dimensions

    Full text link
    The question about the existence of a structural glass transition in two dimensions is studied using mode coupling theory (MCT). We determine the explicit d-dependence of the memory functional of mode coupling for one-component systems. Applied to two dimensions we solve the MCT equations numerically for monodisperse hard discs. A dynamic glass transition is found at a critical packing fraction phi_c^{d=2} = 0.697 which is above phi_c^{d=3} = 0.516 by about 35%. phi^d_c scales approximately with phi^d_{\rm rcp} the value for random close packing, at least for d=2, 3. Quantities characterizing the local, cooperative 'cage motion' do not differ much for d=2 and d=3, and we e.g. find the Lindemann criterion for the localization length at the glass transition. The final relaxation obeys the superposition principle, collapsing remarkably well onto a Kohlrausch law. The d=2 MCT results are in qualitative agreement with existing results from MC and MD simulations. The mean squared displacements measured experimentally for a quasi-two-dimensional binary system of dipolar hard spheres can be described satisfactorily by MCT for monodisperse hard discs over four decades in time provided the experimental control parameter Gamma (which measures the strength of dipolar interactions) and the packing fraction phi are properly related to each other.Comment: 14 pages, 15 figure
    • …
    corecore